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In four studies, the live load factors for the design of reinforced concrete (RC) structures,
and the strength reduction factors assigned to the elements that use FRP material as
internal or external reinforcement, are reevaluated against the values in current practice.
Taking advantage of the theory of the reliability of structures, Studies I and II incorporate
the life-time into the live load factor of an RC element. To this end, a statistical model is
established upon the recognized axioms about the probabilistic distributions of load and
resistance and that the live load factor of 1.60, stated by the current building code for RC
structures, may account for the variations of the live load in a period of 50 years. The
outcome of these studies describes the live load factor as ascending functions of life-time,
which meet the predetermined value of 1.60 for a life-time of 50 years. The same
formulation also provides a solution to the problem of the effect of the under or over-
design on the expected life-time of a member.

Studies III and IV also employ the theory of reliability, but this time to calibrate the
strength reduction factors of the elements that use FRP reinforcement. Study III
concentrates on flexural members with internal FRP reinforcement, while the subject of

Study IV is externally strengthened flexural members with the focus on near-surface-
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mounted (NSM) FRP bars. The novelty of Study III is the introduction of a new approach
to the calibration of reduction factors which is referred to as the “comparative reliability”.
The current North American guidelines that regulate the design of the RC members
internally reinforced with FRP bars, derive their factors by targeting preset levels of
reliability that are, sometimes, not even achievable by the ordinary steel reinforced
concrete members. Conceding that the latter elements are of sufficient safety, the
comparative reliability is a method to calculate the strength reduction factors of the newly
introduced elements in harmony with the old ones. This approach to strength reduction
factors minimizes the penalizing of one material in favor of the other, while maintaining
a uniform level of safety for all.

Unlike Study III, that uses a database of experimental results to obtain its essential
statistical input, Study IV generates its own database of externally strengthened RC
beams and slabs with NSM FRP bars, by benefiting from simulation techniques. The
combination of the computerized simulation and comparative reliability creates an
original approach to the calibration of the strength reduction factors of NSM systems,
while in the current guidelines, the reduction factors are selected by judgment and
consensus and lack a theoretical and experimental foundation. Furthermore, this study
eliminates the current partial strength reduction factor, assigned by the current design

guideline to FRP contribution, and achieves an inclusive factor for NSM FRP systems.
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CHAPTER 1

1. INTRODUCTION

1.1 PREFACE

The two design parameters that determine the safety of a structural member are the load
and strength reduction factors. For common structural materials, such as steel and
reinforced concrete, these parameters are very well established, while for the newly
introduced structural composites these factors are still in need of validation as:

The load factors are designed to account for the uncertainties relative to loads and
therefore, it may be argued that, they are material-independent. Nevertheless, when the
strengthening of an existing structure is concerned, the expected remaining life-time can
be different, probably shorter, from what is expected from new construction. A shortened
life-time, certainly, limits the changeability of the time-dependent loads such as live,
wind and seismic loads. The first two studies of this thesis try to reflect this time-induced
change of randomness in the special case of the live load factor. The proposed method,
however, is expandable to cover other loads as wind, earthquake and snow.

The strength reduction factors, which are supposed to temper the randomness of
resistance, are undoubtedly material-dependent. In this aspect, the current North
American guidelines developed by the American Concrete Institute (ACI), that control
the design of the structural members that use composites (also known as fiber-reinforced
polymers or FRPs), either internally or externally, suffer from two obvious shortcomings.

They either derive these factors by imposing stringent and non-flexible safety measures

www.manaraa.com



on the members they regulate, as is the case for the internally FRP reinforced flexural RC
members, or merely replicate the factors assigned to the ordinary RC elements, with the
addition of partial reduction factors for the FRP contribution, as is the case for the
externally strengthened RC members. Again, this thesis, in its two last studies, is an
attempt to calibrate the strength reduction factors, so that neither the competitiveness nor
the safety of the elements with composite materials is compromised. Study III deals with
the flexural and shear strength reduction factors assigned to beams and slabs reinforced
internally with FRP bars. Study IV calibrates the flexural reduction factors for external
strengthening with FRP bars in the special case of near-surface-mounted (NSM) systems.

The reliability analysis is the recurring theme in all the four studies that form this thesis.
The reliability analysis can simply be described as the assessment of the probability of
failure of a certain element subject to a certain load. If the statistical parameters of load
and resistance are known or estimated, and if a desired level of safety or equally an
acceptable probability of failure, is determined, the strength and load factors can be
calculated by reliability-based-criteria. Since the field of the reliability of structures is
still fresh and not fully explored, this thesis can also make an original contribution to the
advancement of the subject matter which is no less important than its obvious goals stated

earlier.

1.2 OBJECTIVES AND OUTLINE

The thesis may be outlined by Table 1.1 which summarizes the abovementioned points

and the intended improvements. The four studies share similarities in their general
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direction and goals; however, each of them possesses a distinctive character that
separates it from the rest:
e Study I achieves its goal with analytical means that benefit from simplifying
assumptions.
e Study II uses a numerical method to enhance the accuracy of the analytical results
of Study .
e Study III prepares the theoretical ground of calibrating the strength reduction
factors and applies it to a set of experimental data.
e Study IV follows the calibration concept of Study III, but gains its distinction
from generating its input database by computerized simulation.
The similarities provide a smooth transition from one study to the other, while the

differences make each study maintain its independent identity.
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Table 1.1: Outline of the objectives

Parameter of

Study Subject of study concern According to ACI Objective of study
ACI 318-08 . _ 0 _ (03]
I and II RC elements Live load factor y, = 1.60 Y, =An)
Flexural factors are calibrated so that:
qp ACI440.1R-06 Strength reduction B(FRP RC)>3.590) _ _
FRP RC elements factors Shear factors are based on ACI 318-08 ©), with ~ Calibrate the reduction factors
no reliability analysis performed. using the reha}lzlhty analysis
so that:
PG
ACI440.2R-08  Strength reduction |~ 140rs are based on ACT 318-08_ » with - f(FRP RC)=f(Steel RC)
v strengthened  factor for flexural forp FRP ® S P(NSM)~(Steel RC)

RC elements NSM systems No reliability analysis is performed.

) ACI 318-08:9.2.1

@ 1 is the expected life-time (years).
) ACI 440.1R-06:8.2.3

@ B is the reliability index.

) ACI 440.1R-06:8.2.3

©) ACI 440.1R-06:9.1.1

™ ACI 440.2R-08:10.2.7

® ACI 440.2R-08:10.2.10
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1.3 NOTATIONS
Ay= area of FRP reinforcement, in.? (mm?)
Az=amount of FRP shear reinforcement within spacing s, in.? (mm?)
A= area of steel reinforcement, in.? (mm?)
b= width of the beam or slab strip, in. (mm)
Cr= environmental reduction factor
c= concrete cover to the centroid of steel reinforcement, in. (mm)
D= dead loads, or related internal moments and forces
d= dimensionless dead load (random variable)
d = value of d at design point
dp= diameter of reinforcing bar, in. (mm)
d;= effective depth of tensile FRP reinforcement, in. (mm)
d,= effective depth of tensile steel reinforcement, in. (mm)
E .= modulus of elasticity of concrete according to ACI 318-11, ksi (GPa)
E/= modulus of elasticity of FRP bars, ksi (GPa)
E = modulus of elasticity of steel bars, ksi (GPa)
Fx(x)= cumulative distribution function (CDF) for a random variable X
= ratio of stress in FRP to its debonding stress
1= specified compressive strength of concrete, ksi (MPa)
/7= stress level in FRP reinforcement, psi (MPa)
Jm= strength of bent portion of FRP bar, ksi (MPa)

Jr= design stress of externally bonded FRP reinforcement, ksi (MPa)
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/7= ultimate longitudinal tensile strength of FRP bars, ksi (MPa)
i f=ultimate tensile strength of the FRP material as reported by the manufacturer, ksi
(MPa)

/7 =tensile strength of FRP for shear design, ksi (MPa)

fx(x)= probability density function (PDF) for a random variable X
Jy=yield strength of steel reinforcement, ksi (MPa)

G= limit state function

g= normal comparative limit state function

go= a specific value of g

k= gamma distribution parameter

k.= ratio of depth of neutral axis to reinforcement depth

L= live loads, or related internal moments and forces
L’=nominal live load capacity of a member

/= dimensionless live load (random variable)

['= value of | at design point

N= total number of sets of random samples

Ny=number of failures

P= estimated probability of failure

P...= correct probability of failure

P(X<x) = probability of the event X<x

p= probability of the event g<gy

p.= probability of the event g<(

Q= total load (random variable)
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Qp= dead load (random variable)

Q= live load (random variable)

QOn=nominal value of total load, or related internal moments and forces

g= dimensionless total load (random variable)

¢ = value of ¢ at design point

M= contribution of FRP to flexural resistance disregarding professional factor
M, = nominal flexural strength, kip.in. (kN.m)

M,,/= contribution of FRP reinforcement to nominal flexural strength, kip.in. (kN.m)
M,,s= contribution of steel reinforcement to nominal flexural strength, kip.in. (kN.m)
M= contribution of steel to flexural resistance disregarding professional factor
N,;=nominal value of resistance of ith element (i=1, 2)

ns= ratio of modulus of elasticity of FRP bars to modulus of elasticity of concrete
n= life—time (years)

P /= professional factor for FRP contribution

P = professional factor for steel contribution

R= resistance (random variable)

R/= contribution of FRP to total flexural resistance (random variable)

R;= resistance of ith element (i=1, 2)

Ry=nominal capacity of an element

R = contribution of steel to total flexural resistance (random variable)

r= dimensionless resistance (random variable)

#'= value of r at design point

rp= internal radius of bend in FRP reinforcement, in. (mm)
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s= stirrup spacing, in. (mm)

U= required strength of an element (n=50)

U,= required strength of an element (life-time of n years)

u= extreme value distribution (EVD) Type I parameter

u;= ith sample of a uniformly distributed variable between 0 and 1
u, = EVD Type I parameter for live load in a life-time of n years
V.= nominal shear strength provided by concrete, kips (kN)

V= shear resistance provided by FRP stirrups, kips (kN)

V,= nominal shear strength at section, kips (kN)

W= nominal value of wind load

x = design point

x;=ith sample of a random variable X

z'= reduced design point

z,= reduced form of the random variable X

z, = value of z, at design point

a = extreme value distribution (EVD) Type I parameter

o= multiplier on f”. to for an equivalent rectangular stress distribution for concrete

o, = EVD Type I parameter for live load in a life-time of n years

p= reliability index

1 = ratio of depth of equivalent rectangular stress block to depth of the neutral axis

pn = reliability index for a life-time of n years
1= target reliability index

I'(k)= gamma function
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y= total load factor for a life-time of 50 years
yp= dead load factor per ACI 318-11 (1.2)
yr = live load factor per ACI1318-11 (1.6)

v, = live load factor for a life-time of n years

v, = total load factor for a life-time of n years
A= strengthening level

0 L, = coefficient of variation of live load for a life-time of n years
dg, = coefficient of variation of total load for a life-time of n years

epi= strain level in concrete substrate at time of FRP installation, in./in. (mm/mm)
£,=0.003 in./in. (mm/mm), ultimate axial strain of concrete

¢;= intermediary sepeation variables (i=1, 2, ¢)

&, = intermediary separation variable for a life-time of n years

&,= strain in steel reinforcement, in./in. (mm/mm)

e5y= strain corresponding to yield strength of steel reinforcement, in./in. (mm/mm)
Ox = coefficient of variation of a random variable X

6= gamma distribution parameter

x= life-time modification coefficient

x,=0.70, dimensionless bond-dependent coefficient for flexure

A L, = bias factor of live load for a life-time of n years
g, = bias factor of total load for a life-time of n years

Ax = bias factor of a random variable X
1= intermediary variable

1, = mean value of live load for a life-time of n years
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Ly = mean value of a random variable X

Lx“= equivalent normal mean value of a random variable X

p=ratio of live load to total load

pn=FRP longitudinal reinforcement ratio

pr=FRP transverse reinforcement ratio

ps=steel reinforcement ratio

ox= standard deviation of a random variable X

ox° = equivalent normal standard deviation of a random variable X
®= cumulative distribution function (CDF) for standard normal distribution
¢= probability density function (PDF) for standard normal distribution
= strength reduction factor

w;=0.85 partial reduction factor for FRP

= overall reinforcement index producing balanced strain conditions
o= reinforcement index for FRP bars

@ p=FRP reinforcement index producing balanced strain conditions
w,- reinforcement index for steel bars

= steel reinforcement index producing balanced strain conditions
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CHAPTER 2

2. STUDY I: INCORPORATING EXPECTED LIFE-TIME INTO LIVE LOAD
FACTOR FOR RC STRUCTURES USING RELIABILITY ANALYSIS
2.1 BACKGROUND
Current design codes are mostly silent about the expected life-time of a structure, but it is
widely believed and agreed upon that their provisions are intended for a life-time of at
least 50 years (Nowak and Collins 2000, Ellingwood and Galambos 1982, McCormac
1989). The design live load proposed by ASCE 7-10 is by definition the maximum live
load that is predicted to be experienced by an element during its life-time, whereas
normally only a fraction of this maximum, known as the sustained live load, is applied to
the element. Infrequent but typically drastic additions to the sustained live load are
categorized as transient live load, a time-dependent random variable. Therefore, the
design live load is describable as the maximum value of the live load, sustained plus
transient, over the expected life-time of 50 years. Noting that sustained live load is also a
time dependent random variable, the maximum value of live load over a time range
(design live load for that time range) is another random variable whose statistical
properties naturally approach those of the sustained live load as the life-time shortens.
When the life time reaches its minimum, in other words when it is reduced to a given
point in time, these two become identical, thus sustained live load is often called
arbitrary-point-in-time (APT) live load. With such a definition of design live load, it is a

foregone conclusion that, if the life-span of a structure is shortened or prolonged, the

11
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design live load has to be affected in the same manner (i.e., is reduced or increased,
respectively). As a result, when the life-span is shorter than 50 years, in such cases as a
new but temporary building, or an existing building being repaired with the aim of
completing its remaining life-time, a certain degree of relaxation to the code’s live load
factor is logical. Nonetheless, the question of calculation method for this reduction in
load factor (or increase in case of a life-time of more than 50 years) remains unanswered.
The same question may be posed in a somewhat more tangible format, that is: how does
over-design (or under-design) prolong (or shorten) the expected life-time from what the
code intended (presumably 50 years)?

This study is an attempt to tackle these questions using a method of reliability analysis
supported by test data and results available in the technical literature. This is, however,
only a load-oriented solution the consequences of which cannot be overstated inasmuch
as other factors (most importantly environmental effects) are not accounted for. To be
more precise, as the changeability of the live load is reflected in its factor, the possible
decline of the nominal strength or the deterioration of the structure by time may be
mirrored in the strength reduction factor, thus decoupling the problem. The latter,
however, lies outside the scope of this study which only deals with the variability of the
live load with time. Still, by covering the aspect of the problem dealing with the
variation of live load with time, this chapter provides a partial solution to the larger
question. Attention should also be paid to the definition of life-time when the natural
deterioration of the structure is overlooked. In this sense, life-time is not a time span after
which the structure is deemed useless, but is a period during which the probability of

failure is confined within the limits tolerated by the design code.
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In this chapter a method of reliability analysis is utilized to calibrate the live load factor
based on the expected life-time of a cast-in-place reinforced concrete (RC) structure. The
probabilistic parameters of live load are computed for different life-times and live load
factors are then suggested so that the same level of safety is maintained for any given
life-span. An example is presented that demonstrates how modified live load factors can
be conducive to making decision on the necessity and the level of the required

strengthening in a concrete structure in need of repair.

2.2 OUTLINE
The components of this study that are also sequentially presented include:
1) Collection of data (resistance and load models):
e Statistical parameters (i.e., mean and standard deviation) of resistance for each

element and its (ultimate) limit state are gathered from the literature (Nowak and

Szerszen 2003).

e Dead load and live load are assumed to be the only loads exerted on an element
and are combined according to the relevant load combination of ASCE 7 (ultimate
strength design) which is concurrent with ACI 318-11 (U=1.2D+1.6L). When
only live and dead load are of concern, another possible combination is U=1.4D,
which is only critical if the live load is minimal. Since the focus of this sudy is on
the live load, this combination is neglected.

e Statistical parameters of dead and live load for both cases of a 50-year period and
arbitrary-point-in-time are gathered from the literature (Nowak and Szerszen 2003

and Ellingwood and Galambos 1982).
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These brief sections obtained from existing studies prepare the input for the following
sections which make up the original contribution of this work to the existing body of
knowledge.

2) Process of data:

e Based on these data, a probabilistic model is constructed that permits the
computation of the statistical parameters of live load as functions of life-time.
This part provides the data required for the calibration process.

3) Calibration procedure:

e Limit state functions are defined according to the ultimate load-carrying capacity
of the element in question. The limit states are defined as exceeding: a) the
ultimate moment carrying capacity for flexural members (RC beams and slabs);
b) the ultimate shear capacity of RC beams; and, c) the ultimate compressive
capacity of tied RC columns (concrete crushing). Thus the terms “limit state” and
“failure mode” might be used interchangeably.

e The reliability index for a 50-year life-span is calculated according to ACI 318-11
load and safety factors together with relevant statistical parameters of live and
dead load. This reliability index serves as the “target reliability” or the safety level

provided by the design code.

e For each life-time, the live load factor, VL, is calculated so that the target

reliability index is achieved.
e Life-time modification coefficient, x, is then introduced to unify the formulation
of the live load factors. « is calculated for several cases that can cover a range of

loadings and limit states.
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By describing the live load factor, y;, as a function of the expected life-time of a
structure, this chapter tries to add another dimension to the load and resistance factor
(ultimate strength) design method of ACI 318-11. This approach offers the clear
advantage of an economical yet safe design when the expected life-time is different from
what the code intended. Additionally, it provides a methodology to assess the expected
life of structures in need of strengthening, which is a critical factor in deciding upon the

urgency and level of the required repair.

2.3 RESISTANCE MODEL
The structural elements considered in this chapter are cast-in-place RC flexural members
(beams and slabs with tension-controlled failure) and cast-in-place RC compression
members (axially loaded tied columns with compression-controlled failure). The ultimate
limit states are flexural moment capacity for beams and slabs, shear capacity for beams,
and compressive capacity for columns. Materials utilized in construction are ordinary
concrete and steel reinforcing bars. The construction method is cast-in-place. For such
members and conditions, the statistical parameters of resistance, R, are taken from
Nowak and Szerszen (2003) and shown in Table 2.1. These parameters include: 1) bias
factor or 4 (the ratio of mean to the nominal or design value of a random variable); 2)

coefficient of variation (CoV) or d; and, 3) the probabilistic distribution of the variable.

2.4 LOAD MODEL

The two most common load components, dead and live loads, are herein considered. The

statistical parameters and properties of dead and live loads are taken from the available
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literature (Nowak and Szerszen 2003, Ellingwood and Galambos 1982) and summarized
in Table 2.2 with its parameters defined similar to Table 2.1. Two sets of these
parameters are introduced: the first set, arbitrary-point-in-time (APT), relates to the load
expected to act on the structure at any given time; while the second set corresponds to the
maximum load expected in the 50-year life-time of the structure. Dead load is basically
time independent, therefore the two sets (i.e., APT and 50-year) are identical. In addition
to time, live load parameters are also functions of the influence area so that by increasing
that area, the live load tends to grow more deterministic and less random. Here, an
influence area of 430 sq. ft. (40 m?) is considered as a reasonable assumption which also
corresponds to the values in Table 2.2. This concludes the collection of data from
literature. The following section details the utilization of the statistical modelling in order
to interpolate (for life-times shorter than 50 years) and extrapolate (for life-times longer
than 50 years) these parameters and hence generate the essential data for the calibration

of the live load factor.

2.5 CALCULATION OF STATISTICAL PARAMETERS OF LIVE LOAD AS
FUNCTIONS OF LIFE-TIME

Building upon Table 2.2, this study tries to project the statistical parameters of live load,
Ar and o, for different life-spans.

The probabilistic nature of maximum live load in a certain period of time is assumed to
be characterized by extreme value distribution (EVD) Type 1. Such a distribution is
defined by its cumulative distribution function (CDF), Fyx(x), and probability density

function (PDF), fx(x) , as shown in Equations 2.1 and 2.2 (Nowak and Collins 2000):

_e—a(x—u)

Fx(x) =P(X<x)=e (2.1)
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Fo(x) = ae—e "V gmalr-w (2.2)
In Equations 2.1 and 2.2, X is a random variable and P(X<x) denotes the probability of X
being equal or smaller than a specific value of x. Parameters a and u are related to mean,

Iy, and standard deviation, oy, of X by (Haldar and Mahadevan 2000):

0.5772

Ux = U+ (2.3)

Vi

Oy = —
X Vea

(2.4)

In order to derive 4 and ¢ for a period of 25 years, it can be argued that a life-time of 50
years can be split into two consecutive 25-year periods. It is assumed that for each sub-

life-time, the live load, Oy, conforms to a Type I distribution. Let Fs5 o, (/), defined by

parameters a,s and u;s, stand for the CDF of live load during each period of 25 years,

whereas F's g, (1), representing the CDF over the total life-time, is defined by aso and s

or:
iy = Un + 2 (2.5)
Ol = oo (2.6)

Where 7 is the life-time, i.e., 25 or 50 years in this case. According to Equation 2.1:
P(QL < l)lin 50 years — FSO,QL(I) (2.7)
P(QL < Dlin the first 25 years = F25,0, (D (2.8)
P(Qy < Dlin the second 25 years = F25,0, (D (2.9)

The probability of occurrence of the event in Equation 2.7 is conditional upon occurrence

of both events in Equations 2.8 and 2.9 or:

P(QL < l)lin 50 years — P[(QL < l)lin the first 25 years AND (QL < l)linthe second 25 years]

(2.10)
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It is justifiable to assume that the loadings in the two periods are uncorrelated and

therefore:

P(QL < l)lin 50 years = [P(QL < l)lin the first 25 years] [P(QL < l)lin the second 25 years]

(2.11)
Substituting from Equations 2.7 to 2.9 into Equation 2.11:
Fso,QL(l) = F225,QL(I) (2-12)
Hence:
e 0T g —ema2s(Tuzs NG (2.13)
Which necessitates:
5o = 25 (2.14)
And therefore:
OLeo = OL,. (2.15)
And:
As5pUsg — AzsUzs = In(2) (2.16)

Hence, recalling Equations 2.5 and 2.6:

In(2) V6 V6
Hipg = Higy = o = gy = 2 IN@)0wy, = fug, [1 =2 @81, @17)
In Equation 2.17, d,,,=0.18, as per Table 2.2. In general, for any life-time of n years for
which a valid assumption of EVD Type I distribution can be made:

= g, [1 +0.140In (%)] (2.18)

O-Ln = O-LSO (219)
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Note that for n=25, Equations 2.18 and 2.19 are identical to Equations 2.17 and 2.15. 4, ,
the bias factor of the live load for a period of n years (e.g., 4.,,=1.00 from Table 2.2),

and o L, the coefficient of variation of the live load for the same period, are defined as:

Ay, === (2.20)
_ Oin
8, =5 2.21)

In Equation 2.20, L is the nominal (design) value of live load per code. Eventually, by

substituting from Equation 2.20 into 2.18:

A, = Ay |1+ 0.140In (2)] = 1+ 0.140In () (2.22)

n n
50 50
Combining Equations 2.19 and 2.21 results in:
U1,01, = HigeOLg, (2.23)
Substituting from Equation 2.20 into Equation 2.23:
AL 6, = A0, = 0.180 (2.24)

Or:

0.180

- 1+0.1401n(5”—0) (2.25)

1,

One must, however, be mindful of the limitations of Equations 2.22 and 2.25. As n
decreases, the probabilistic distribution of live load deviates from EVD Type I and
approaches gamma distribution, which is the distribution corresponding to APT.
Therefore, these formulae lose their applicability for small values of n. The minimum
value of n that can justify an EVD Type I distribution is mostly a matter of engineering
judgment; nevertheless, mathematically speaking, in order to maintain consistency, it is

necessary but may not be sufficient, that n be selected so that ALnZ AL y PT:O'24 and 5Ln§
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01 ,p;=0.65, which can be conservatively translated into n=1. By imposing this

restriction, Equations 2.22 and 2.25 provide a smooth transition between the two cases of
point-in-time and 50-year period and even beyond (Fig. 2.1). Table 2.3 also presents the
statistical parameters (bias and CoV) for a few selected life-times. In Fig. 2.1 the origin,
n=0, corresponds to APT in Table 2.3. The segments of the two curves confined between
APT and n=1 are of very little practical interest and at any rate can be obtained accurately

enough by a linear interpolation between the two points.

2.6 CALIBRATION OF LIVE LOAD FACTOR BY MEANS OF
RELIABILITY ANALYSIS

The safety level of a structural element is measured in terms of reliability index f which

1s defined as:

— HrRTHo (2.26)
’a,zﬁaé

In which the subindices R and Q indicate resistance and load respectively. In case of live

load, as the mean value of load, KL, is a function of life-time (Equation 2.18) so is the

reliability index, unless resistance is adjusted so that a constant level of safety for any
given life-time is attained. This constant level or target reliability, fr, is benchmarked

against the already established level of safety of the code:

Br = Bso (2.27)

Pso 1s the reliability index for a life-time of 50 years assuming that load and safety factors
given by ACI 318-11 pertain to that time span. It is essential that attention be paid to this
definition of the target reliability that differs from the conventional target reliability
described as a constant value. By this definition, fr is a function of the relative

magnitude of live and dead loads. S is also, as the design code intends, a function of the
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consequence of failure with the more critical elements or failure modes having larger
target reliability indices. These variations of the target reliability are quantified in the
upcoming sections of this study.
Adjustment of resistance can be implemented by changing design requirements (i.e., the
design live load factor, the load magnitude or the strength reduction factor). In this study,
this adjustment is applied to the live load factor and is referred to as the calibration of live
load factor.
Calculation of target reliability index (f50)
The first step of calibration is the calculation of the reliability index in terms of safety and
load factors and statistical parameters of load and resistance. ACI 318-11 requires that the
following equation between the nominal values of resistance, Ry , dead load, D, and live
load, L, be upheld:

$Ry =ypD +y,L (2.28)
In which yp=1.2 is the dead load factor, y;=1.6 is the live load factor and @ is the
strength reduction factor that assumes different values based on the limit state (Table
2.4).
For RC members complying with this load combination, Fig. 2.2 displays the target
reliability over the whole range of p, the ratio of live (L) to total load (D+L). Table 2.4
also shows the exact value of the index for a few select values of p. Appendix A provides
details of the calculations undertaken to generate the relationship between the reliability
index and p. Furthermore, Table 2.4 and Fig. 2.2 show how target reliability is in
agreement with the importance hierarchy of the elements and the suddenness of failure.

The highest value of £ belongs to columns, the lowest to slabs while beams are placed in
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between. Again for beams, failure against shear has to satisfy higher levels of reliability
compared to the more ductile and less sudden flexural failure.
Modification of live load factor
ACI 318-11 load-resistance requirement (Equation 2.28) can be generalized for any life-
span of n years as:

$Ry =ypD +y,L (2.29)
The aim of modification (or calibration) is to find y, ~so that a constant level of

reliability is maintained for any life-time of n years. Details of calculations are provided

in Appendix B and the final solution is repeated here:

y,, =16 [1 + kIn (%)] (2.30)
Derived from Equation B13, x or life-time modification coefficient depends on the
element, limit state (failure mode) and as Table 2.5 shows, to a lesser degree, the live
load ratio, p, while it is independent of 7.
Minimum live load factor
Similar to Equations 2.22 and 2.25, Equation 2.30 is not recommended for n<1 year. Live
load factors belonging to shorter life-times are not of considerable practical interest;
however, they are briefly discussed here for completeness.
The minimum value of the live load factor corresponds to the shortest of life-times, i.e.,
APT, therefore the limit for Equation 2.30 may be obtained by following the same
procedure detailed in Appendix B with the difference that the statistical parameters of
the arbitrary-point-in-time live load (Table 2.2) replace those calculated from Equations
2.22 and 25. Again this minimum load factor depends on the element, ultimate limit state

and the live load ratio, p. For instance, if p=0.50 then y; ,,,=0.697 for columns subject to
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compressive force and y.,,.=0.639 for slabs subject to flexure. With these two values

calculated for the elements demanding the highest and lowest reliability indices
respectively, Fig. 2.3 depicts the variation of the live load factors for these elements, limit
states and the live load ratio of 0.50 over time spans ranging from APT to 100 years.
Simplification for practical purposes

As Fig. 2.3 reveals, the live load factor curves for different elements are virtually
inseparable, bearing in mind that the curves for the live load factors of beams, under
flexure or shear (not shown in the graph), lie between the two curves relative to columns
and slabs. This calls for a simplification of Equation 2.30 which enhances its workability

and streamlines the structural analysis:
n
Vi, = 1.6[1+0.09In (3)] > 0.65 2.31)

Equation 2.31 is employable regardless of the live load ratio, element type or limit state.
Appendix C recounts the details of this reformulation which, certainly, is not the sole

approximation method and engineers, as they deem fit, can derive their own formulae.

2.7 EXAMPLE OF APPLICATION: REPAIR OF AN EXISTING BUILDING
A simple example illustrates how including the expected life-time of a building can
influence and guide the process of the repair of a building.
An existing RC building must sustain a dead load of D=60 psf (L=3.0 kN/m?) and a live
load of L=80 psf (L=4.0 kN/m?) which, according to ACI 318-11, leads to the required
strength of the structural members of U equired =(1.2)(60 psf)+(1.6)(80 psf)= 200 psf (10.0
kN/m?). Due to the structural inadequacies detected in the building, it is determined that

its structural members have an average capacity of @Ry=184 psf (9.2 kN/m?) which
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corresponds to the same dead load but a live load of only L=70 psf (L=3.5 kN/m?). The
design objective is to determine a) the required level of repair, if the remaining life of the
structure after repair is required to be 10 years and b) the remaining life-time of the
building, for the same level of safety of 50 years, if no repair is implemented.

a) Recalling Equation 2.31(for simplicity, although the more accurate form of Equation

2.30 is also possible) with n =10 years, the live load factor, y, , may be modified to

1.368. Hence U, equirea=(1.2)(60 psf)+(1.368)(80 psf)=181 psf (9.1 kN/m?) < U exisiing=184
psf (9.2 kN/m?) which rejects the necessity of repair.
b) The expected life-time of an RC structure must satisfy Equations 2.29. For the building

in the example this leads to y, =1.40. Reversing Equation 2.31 and solving for n, the

remaining unrepaired life-time is approximately 12 years.

2.8 CONCLUSIONS
To adjust the live load factor of ACI 318-11, y,=1.6, based on the expected life-time of
structures, the live load factor is derived as a function of the expected life-time, for
common reinforced concrete elements and ultimate limit states (or failure modes). To that
end, the statistical data available in the literature is used and expanded by describing the
probabilistic parameters of live load as functions of life-time using the statistical model
of extreme value distribution Type 1. Assuming that the design requirements of ACI 318-
11 are based on a life-time of 50 years, the live load factors, while different for different
element types, converge to the factor stipulated by ACI 318-11 when the life-span
approaches 50 years. In other words, all the factors are, as expected, ascending functions

of life-time with a fixed value of 1.6 at n=50 years. However, due to their closeness and
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for the convenience of use in practice, all these curves are condensed in one to propose a
unique and simple formulation for the variation of the live load factor with the expected
life-time. This modified factor allows engineers to optimize their design without
compromising the safety of structures.

The method detailed in this chapter is applicable to other time-dependent loads (e.g.,
seismic or wind loads) and other load combinations in order to generate load factors that
are tied to the expected life-time.

The reliability analysis presented in this chapter involves some approximation as, in
essence, it does not discriminate between normal and non-normal random variables. This
can be alleviated by adopting numerical methods that incorporate the distribution of each
random variable into calculations. The equations derived in this study may then be used
to generate a semi-analytical solution for live load factors based on numerical outcomes

which is the subject of the next chapter.
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Table 2.1: Statistical parameters of resistance for cast-in-place RC members "

Structural type Limit state Bias (1g) CoV(dz) Distribution

Beam Flexure® 1.190 0.089 Lognormal
Beam shear 1.230 0.109 Lognormal
Slab Flexure® 1.077 0.146 Lognormal
Tied column compression 1.260 0.107 Lognormal

(DNowak and Szerszen (2003)

@ Tension controlled

Table 2.2: Statistical parameters for load components

Arbitrary point-in-time (APT) 50-year life-time
Load
component Bi(jz(l) C(();;(l) Distribution® Bi(js(l) C(();;(l) Distribution®
Dead load®  1.05  0.10 Normal .05 0.10 Normal
Live load 0.24 0.65 Gamma 1.00 0.18 Type I

(DNowak and Szerszen (2003)
@ Ellingwood and Galambos (1982)
®)Cast-in-place
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Table 2.3: Statistical parameters of live loads

Life-time  Bias CoV
(nyears)  (Ar,) (0z,)

APT 0.240 0.650

1 0.452 0.398
5 0.677 0.266
10 0.774 0.233
25 0.903 0.199
50 1.000 0.180
100 1.097 0.164

Table 2.4:Target reliability indices, S50, as a function of p for cast-in-place RC members

Pso
Structural type  Limitstate 0%  p=025  p=0.50  p=0.75  p=1.00
Beam Flexure” 090  3.83 4.24 4.34 4.28
Beam shear 0.75 4.39 4.69 4.80 4.81
Slab Flexure 090  2.12 2.45 2.64 2.75
Tied column compression  0.65 5.21 5.47 5.57 5.57

(DTension controlled
@DACI318-11

www.manharaa.com




28

Table 2.5: Life-time modification coefficient, «, as a function of p for cast-in-place RC

members

Structural type  Limit state p=0.25 p=0.50 p=0.75 p=1.00

Beam Flexure!” 0.088 0.091 0.091 0.091
Beam shear 0.085 0.088 0.087 0.086
Slab Flexure!” 0.096 0.100 0.102 0.103
Tied column compression  0.081 0.083 0.082 0.081

(DTension controlled
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CHAPTER 3

3. STUDY II: NUMERICAL APPROACH TO LIVE LOAD FACTORS FOR RC
STRUCTURES AS FUNCTIONS OF LIFE-TIME
3.1 BACKGROUND
Summary of study I
When conventional reinforced concrete (RC) structures are concerned the dominant
design load combination against the gravitational loads, according to ASCE 7-10 and
ACI318-11, is:
U=12D+1.6L (3.1)

Where U is the required strength and D and L are dead and live loads, or their related
internal moments and forces. The live load is, naturally, time-dependent which binds
Equation 3.1 to the intended life-time of the structure, for which a span of 50 years is the
standard assumption. The aim is simply to generalize Equation 3.1 as a function of the
expected life-time, n, or:

U, =12D+vy, L (3.2)
Where y,, is a function of n, e.g., y1,,=1.60. As a preamble to this study, an approximate

analytical solution was presented in Chapter 2 which yielded results in the general form

of:

YL, =V [1 + kIn (5”—0)] (3.3)
Where, , the life-time modification coefficient is a function of two parameters: the limit

state (failure mode) and p=LAD+L).

31
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Objective

This chapter tries to overcome the deficiencies of the analytical solution presented in the
previous chapter (Study I) using a numerical method (Rackwitz-Fiessler procedure) while
benefiting from the approximate analytical solution to mold the numerical results into an
analytical format. The two objectives of this study are: a) to use the numerical Rackwitz-
Fiessler procedure to refine the approximate analytical results obtained in the previous
study; and, b) to offer an extensive comparison of the mainstream reliability analysis
methods (i.e., analytical, numerical and simulation techniques) which are applied in
practical cases. The latter can be regarded as an investigation on the extent of efficiency

and accuracy of each method.

3.2 OUTLINE
The contents of this chapter include a discussion of:

e The “target reliability index” is defined as the reliability index of a cast-in-place
RC element complying perfectly with the load-resistance requirements of ACI
318-11, when the statistical parameters of the live load are derived for the
duration of 50 years.

e The target reliability indices are calculated by the Rackwitz-Fiessler method and
are juxtaposed with the results obtained by the conventional assumption that the
limit state conforms to the normal distribution.

e The state of failure is simulated numerically via Monte Carlo method and the
target reliability indices are recalculated. This stage provides proof positive of the

enhancement in accuracy achieved by the Rackwitz-Fiessler method.
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e For any life-time of n years, the statistical parameters of the live load are modified
according to Chapter 2 and the live load factor is calibrated so that the target
reliability is attained.

e The live load factor is formulated as a function of the life-time and conversely the
expected life-time is described as a function of the live load capacity of an

element and its design live load.

3.3 CALCULATION OF RELIABILITY INDEX: RACKWITZ-FIESSLER
PROCEDURE

The first stage of the process is the calculation of the target reliability index, S, which, in
this study, is redefined as, fs5o, the reliability index of an element if the strength reduction
(9) and load factors (y) are based on ACI 318 and the statistical parameters of the live
load are based on a life-time of 50 years. Study I provides these values of S5y based on
the simplifying assumption that load and resistance are random variables that follow the
normal distribution (top part of Table 3.1).

To achieve higher accuracy, the numerical Rackwitz-Fiessler procedure can be utilized
which takes into account the probabilistic distribution of the random variables. This
procedure is detailed and developed in Appendix D to accommodate the limit state
investigated in this study. The middle part of Table 3.1 shows the target reliability
indices for a few selected values of p=L/(D+L) calculated by this procedure. As an
example, Table 3.2 details how fr =£50=3.87 is calculated for an RC beam subject to
flexural failure (ultimate limit state) caused by equal nominal live and dead loads
(p=0.50). It should be noted that the first cycle of the Rackwitz-Fiessler is equivalent to

the assumption that all the variables are normally distributed, as in Equation A17 or
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equally in Study I, and leads to the same results. For the instance of this case, f=4.24
from both the normal assumption part of Table 3.1 and the first cycle in Table 3.2. The
subsequent values of £ in Table 3.2 show the transition towards the eventual
convergence, £=3.87, which is the corresponding value of f5o obtained by the Rackwitz-
Fiessler procedure (the middle part of Table 3.1). For the cases investigated in Table 3.1,
the relative difference between the results of the two methods reaches a maximum of
29% and averages at 12%.

Fig. 3.1 portrays a comparison between the two approaches in the case of beams.
Significant differences, especially for cases where the live load accounts for the majority
of the total applied load, necessitate that the error associated with the two approaches be
estimated. In this study the Monte Carlo simulation, discussed in the following section, is
employed to arbitrate between the former two methods and provide a sense of accuracy

of each.

3.4 CALCULATION OF RELIABILITY INDEX: VALIDATION BY MONTE
CARLO SIMULATION

Monte Carlo method is simply a brute force technique that generates samples of
numerical data (e.g., load and resistance) and then observes the number of times an event
of concern (e.g., failure) occurs. Appendix E provides the details of the method by which
any level of precision is theoretically obtainable; however, it also points out its
computational intensity if a high reliability index is to be calculated with a high level of
accuracy, the reason that renders the two aforesaid methods (Rackwitz-Fiessler and

normal assumption) , even with their recognized limitations, of great practical interest.
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The bottom part of Table 3.1 shows the results of the Monte Carlo simulations which are
in close accordance with the Rackwitz-Fiessler method (less than 1% difference on
average with a maximum of 2.5 %). With the target reliability indices validated, the
actual objective of this study and its contribution to the reliability literature is explained

in the following sections.

3.5 CALIBRATION OF LIVE LOAD FACTOR BASED ON THE EXPECTED
LIFE-TIME

When the target reliability is calculated by the Rackwitz-Fiessler procedure (middle part
of Table 3.1), the parameters A;, o, and y are replaced by their counterparts that

correspond to a life-time of n years, 1, , d, and y, as formulated in Study I. For each life

span, the load factor y, is adjusted so that this target reliability is attained. This requires a
trial and error solution for y,, with each trial going through the iterative procedure

detailed in Appendix D. The modified live load factor, y, , is then back calculated from
Equation B2. Table 3.3 shows the calibrated live load factors (y ) for p=0.50.

Example of application
A simple example may explain Table 3.3 more clearly. An RC beam is subject to equal
dead and live loads of 50 psf (2.5 kN/m?) which also produce equal internal moments.
The aim is to calculate its required flexural strength, U, if
a) the beam is to be designed according to ACI 318-11.
b) the beam is being examined for possible repair as its existing factored capacity is
evaluated as @Ry = 130 psf (6.5 kN/m?), while it is required to function for only 5
more years.

c) the beam is part of an important building with an expected life-time of 100 years.
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Since D=L then p= L/ (D+L)= 0.50 and Table 3.3 is applicable. Therefore:
a) Usp=140 psf (7.0 kN/m?) from either Equation 3.1 or equally by substituting

V15,=1.600 (from Table 3.3) into Equation 3.2.
b) From Table 3.3, y,,=1.314, and by substituting into Equation 3.2: Us=125.7 psf

(6.3 kKN/m%)< @Ry =130 psf (6.5 kN/m?), hence, no repair is needed although the
beam is deficient according to ACI 318-11 which demands a strength of Us,=140
psf (7.0 kN/m?) from part (a).

c) From Table 3.3, yL100=1.686, and by substituting into Equation 3.2: U;op=144.3

psf (7.2 kN/m?). A slight addition to the strength, 4.3 psf (0.2kN/m?), drastically
lengthens the life-time.
For other loading proportions (different values of p) tables similar to Table 3.3 can be
developed which are left out for brevity; instead, a generalized solution that practically

covers all the cases is formulated in the next section.

3.6 UNIFIED FORMULATION OF LIVE LOAD FACTORS
To obtain a formula for the live load factors from the numerical values a regression curve
of must be fitted to each column of Table 3.3. Finding the optimal curve type to be fitted
to a set of numerical data is normally a matter of trial and error. In this study, however,
the analytical although approximate solution (Chapter 2) provides the benefit of having a
natural candidate that with minor modifications fits extremely well into the numerical
results. Furthermore, such a regression curve has the additional advantage of forecasting
the results beyond the original data points with adequate certainty, while the extrapolated

tails of the curves selected by trial and error must always be treated with extreme caution.
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Equation 3.3 is, therefore, fitted to the columns of Table 3.3, where the unknown x or
life-time modification coefficient, is calculated from conventional regression procedures.
Table 3.4 shows these results and others that pertain to a few selected values of p.
Compared to the analytical results (Chapter 2) which demonstrated little and slightly
erratic sensitivity to p, the numerical results follow a general and noticeable declining
trend as p, the share of live load from the total load, increases. The gap between the two
methods also widens with the increase of live load or p.

Fig. 3.2 and Fig. 3.3 compare the results obtained in this study with those from Study I in
the cases of a beam subject to flexure and a column subject to compressive axial load.
For both cases D=L or p=0.50. Equation 3.3, however, is singular if »=0 which puts the
start point of the curves out of the range of the validity of Equation 3.3.The next section

deals with this point.

3.7 MINIMUM VALUE OF LIVE LOAD FACTORS
A restriction must be imposed on the minimum acceptable value of » in Equation 3.3.
Logically the minimum modification factor corresponds to that of the shortest life span or
APT. Therefore values of #n that yield live load factors smaller than those corresponding

to the arbitrary—point-in-time (Table 3.5) are to be neglected, or:

Yi, =1L [1 + kln (:—0)] Z Yiapr (3.4)

YL,py 18 Obtained in the same manner of y, , taking into account that in the APT case the

probabilistic distribution of the live load conforms to the gamma distribution instead of
EVD type 1, as discussed in more detail in Appendix D. Conservatively, however, the

inequality may be replaced by limiting the life-time to a minimum of 1 year (n>1).
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3.8 APPLICATION TO CALCULATION OF EXPECTED LIFE-TIME AS A
FUNCTION OF LOAD AND RESISTANCE

The obvious application of mathematical procedure developed in this chapter is to adjust
the required strength according to the expected life-time of a new structure or the
remaining life-time of an existing one. This was explained earlier by a simple example,
but this formulation, if reversed, can also be an aid to engineers attempting to estimate
the expected life of a structure based on its design capacity and design loads.
If an RC element is optimally designed then, according to ACI 318, its nominal strength,
Ry, must uphold Equation 3.5:

@Ry = 1.2D + 1.6L (3.5)
Where @ is the strength reduction factor. While the nominal strength of an over or under-
designed element satisfies Equation 3.6:

®Ry = 1.2D + 1.6L’ (3.6)
Where L’ is the nominal live load capacity of the member and accounts for the deviation
from the loading requirements. If Equations 3.2 and 3.6 are equated (Un=0Ry) the life-
time of the element, n, or the period during which its capacity satisfies the strength

requirement can be derived as:

n = 506l (3.7)
Again, L’ is the nominal live load that a member can sustain, L is the design live load
stated by the code and «, is selected from Table 3.4. A simplified example can show how
life-time is affected by a change in use of a building.
A building, based on its function, must be capable of carrying a live load of L=50 psf (2.5

kN/m?). It is also assumed that the dead load has an equal magnitude or D=50 psf (2.5
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kN/m?) which leads to U=140 psf (7.0 kN/m?). However, the building is slightly over-
designed and its structural members have an average capacity of ORy=150 psf (7.5
kN/m?) which according to Equation 3.6 can be divided into the unchanged dead load of
D=50 psf (2.5 kN/m?) and the new live load of L '=56.25 psf (2.8 kN/m?). The building is
now being converted to a different use which, according to the load requirements,
necessitates a design live load of L=60 psf (3.0 kN/m?). The effect of this conversion is to
be investigated on the expected life-time of each element type.

Since, dead and live load are approximately equal before and after conversion, p=~0.5, and
with a slight approximation, corresponding values of x from Table 3.4 may be
substituted in Equation 3.7. Table 3.6 shows how the initial over-strength and subsequent
under-strength greatly influence the expected life-time of the building and the probability
of failure of each member type. Subtly, it also reveals that degree of sensitivity of the
elements to over or under-strength conforms to the hierarchy of their importance or
reliability: The most sensitive are the columns, the least are the slabs while beams are in
between. Again for beams, shear limit state is more decisive in defining the life-time as
compared to the more ductile and less sudden flexural limit state.

The procedure described in this study can be applied on other time dependent loads,
snow, wind and earthquake or other structural elements to describe their load factors as

functions of life-time for the limit states considered.
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3.9 CONCLUSIONS
The following results are drawn from this study:

e Live load factors as functions of the expected life-time are derived for common
reinforced concrete elements and ultimate limit states (or failure modes), using the
statistical data available in the literature and expanding the probabilistic parameters of
live load as a function of life-time by means of the statistical model of extreme value
distribution Type I. The numerical Rackwitz-Fiessler procedure of reliability analysis is
applied to this data, while a simplified analytical method (Study I) provides the basis
upon which the numerical results are shaped into a uniform and simple analytical format
(Equation 3.3). Assuming that the design requirements of ACI 318-11 aiming at a life-
time of 50 years, the live load factors are, as expected, ascending functions of the life-
time, n, which converge at the fixed value of y,=1.60 at n=50 years, but differ in the life-
time modification coefficient, x, which varies according to the element type, limit state
and the ratio of live load to the total load.

e By providing a method to calculate the influence of any under-strength on the
life-time or equally the probability of failure during a certain period, live load
modification equations may also be interpreted as a means to appraise the necessity of
repair for a structure. Expected life of a member as portrayed by Equation 3.7 is an
exponential function of the live load demand (L), its live load capacity (L’) and its failure
mode (k). It is demonstrated how even a slight deficiency in strength may have dramatic
implications on the probability of failure and make rehabilitation required. Conversely, a
seemingly insignificant over-strength may drastically prolong the expected life of a

structure. The latter implies that for important structures which are expected or needed to
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last considerably more than 50 years, comparatively small modifications in design can
provide both safety and economy.

e A byproduct of this study is a relatively comprehensive comparison of the
common methods utilized in the reliability analysis: the simple assumption that the limit
state conforms to a normal distribution, the more sophisticated Rackwitz-Fiessler method
which observes, to some extent, the effect of different statistical distribution and finally
the Monte Carlo method of simulation by which any degree of accuracy is theoretically
attainable, so long as the computational obstacles can be overcome. For the cases
investigated, as the portion of the live load with respect to the total load grows, the first
method leans towards over-predicting the reliability index. Thus, it is recommendable
that whenever the live load forms the majority of the total load, either of the two latter
methods, Rackwitz-Fiessler or Monte Carlo, be employed to perform the reliability

analysis.
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Table 3.1: Target reliability indices, fs9, as a function of p for cast-in-place RC members

Pso
Method Structural type Limit state p=0.25 p=0.50 p=0.75 p=1.00

Beam Flexure'" 3.83 4.24 4.34 4.28
Té 'g Beam shear 4.39 4.69 4.80 4.81
Z g Slab flexure®  2.12 2.45 264 275

Tied column compression  5.21 5.47 5.57 5.57
5 Beam flexure” 4.15 3.87 3.55 3.33
'E % Beam shear 5.22 4.74 431 4.02
E aéi Slab flexure” 2.40 2.72 2.73 2.67
acd% Tied column compression  6.39 5.59 5.02 4.64
o Beam flexure” 4.09 3.85 3.53 3.32
g g Beam shear 5.16 472 431 4.02
% é Slab flexure'” 2.34 2.67 2.72 2.67
8 Tied column compression  6.35 5.57 5.02 4.65

(DTension controlled
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Table 3.2: Calculation of sy for RC beams in flexure (p=0.50)"")

Iteration cycle

Parameter 1 2 3 4 5
oa 0.047 0.047 0.047 0.047 0.047
Lha 0472 0472 0472 0472 0472
o/’ 0.081 0.136 0.200 0223 0227
e 0.450 0.377 0.228 0.160 0.148
0,° 0.094 0.144 0206 0228 0.232
1y 0.922 0.849 0.700 0.633  0.620
0, 0.148 0.100 0.118 0.124 0.125
10 1.666 1.566 1.625 1.637 1.639
d 0.527 0.524 0.509 0.506 0.505
I 0.608 0.806 0.887 0.902 0.904
r 1.135 1331 1396 1.408 1.409
i 4238® 4072 3.887 3.873 3.873°%

@ For definitions of symbols see NOTATIONS.
@Similar to normal assumption: 7= fiso ~4.24

© )Convergence achieved: f7= fs0 =3.87
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Table 3.3: Live load factors, y,  (p=0.50)

44

Structural type and limit state

RC beam cast- RC beam RC slab cast- RC column

Life-time in-place, cast-in-place, in-place, cast-in-place,
(n years) flexure'” shear flexure tied®
APT 0.802 0.826 0.709 0.840
1 1.115 1.164 0.991 1.218
5 1.314 1.342 1.238 1.374
10 1.402 1.421 1.347 1.443
25 1.512 1.520 1.490 1.530
50 1.600 1.600 1.600 1.600
100 1.686 1.678 1.710 1.667

(DTension controlled

@ Axial compression

Table 3.4: Life-time modification coefficient, «, as a function of p

K
Structural type Limit state p=0.25 p=0.50 p=0.75 p=1.00
Beam flexure”  0.086  0.078  0.074  0.073
Beam shear 0.081  0.070  0.065  0.063
Slab flexure  0.100  0.098  0.093  0.089
Tied column compression  0.073  0.061  0.057 0.055

(DTension controlled
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Table 3.5: Minimum live load factors, y;, APT

YLypr

Structural type Limit state p=0.25 p=0.50 p=0.75 p=1.00

Beam flexure” 0.800 0.802 0.842  0.870
Beam shear 0.810 0.826 0.886 0.928
Slab flexure” 0.720 0.709  0.744  0.774

Tied column compression 0.800  0.840 0925 0974

(DTension controlled

Table 3.6: Effect on life-time of a hypothetical RC building

Life-time(years)

Before conversion After conversion

Structural type Limit state L=50 psf (2.5 kN/m?)  L=60 psf (3.0 kN/m?)

Beam flexure” 248 22
Beam shear 298 20
Slab flexure') 179 25
Tied column compression 388 18

(DTension controlled
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Figure 3.1: Target reliability indices, fs0, as a function of p for cast-in-place RC beams
(Rackwitz-Fiessler method compared to normal distribution assumption)
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Figure 3.2: Live load factors for RC beams subject to flexure (p=0.50)

Analytical vs. numerical results
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Figure 3.3: Live load factors for RC columns subject to axial compression (p=0.50)

Analytical vs. numerical results
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CHAPTER 4

4. STUDY III: RELIABILITY ANALYSIS OF CONCRETE BEAMS
INTERNALLY REINFORCED WITH FRP BARS
4.1 BACKGROUND
The ever-increasing use of FRP materials in construction, both in new and existing
structures, calls for a deeper investigation into the selection of the strength reduction (or
variously called safety) factors imposed on their design equations, as the current values
have been typically chosen based on judgment and consensus and are still in need of hard
evidence for validation. This validation can be attained by the reliability analysis that
links the probability of failure to the load and safety factors, providing a basis for their
calibration to achieve desired levels of safety. Conventionally, the reliability index is
defined as an indicator of the probability of failure of a member with a resistance of R,
against the loads it may experience during its life-time, O; both QO and R being random
variables. This, however, poses a few obvious difficulties due to presence of load
parameters in the calculations:
e Compared to resistance, statistical parameters of loading are far more difficult to
obtain, due to the vast number of factors affecting load.
¢ Load and resistance, being of different nature, follow different statistical distributions
which, especially in the case of multiple load cases, makes the problem of calculating the

reliability index less tractable.

49
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e Reliability analysis has to be performed for several types of loads and load
combinations.

e For each load combination, covering the whole range of plausible loadings makes the
calculations cumbersome, especially when more than two loads are involved.

The idea central to this study is to calibrate safety factors of the elements reinforced with
new materials not by setting them against loads, but by comparing them to elements of
the same capacity, but made of better-established and better-known materials. In other
words, if the current safety factors for steel-reinforced concrete and its associated load
factors are taken for granted, as there is little doubt about its performance when designed
according to code, how should the safety factors of FRP-reinforced members be
proportioned so that the same level of safety is attained? This study elaborates this
concept, applies it to the case of beams internally reinforced with FRP bars and proposes

revised strength reduction (safety) factors for use in FRP design guidelines.

4.2 OUTLINE
The contents of this chapter, in sequential order, may be summarized as:

e By employing the concept of reliability index, an interim index of “comparative
reliability” is proposed that bypasses the loading variables and weighs the
resistances of two structural elements with the same ultimate limit state directly
against each other.

e The comparative reliability index is then related to the conventional target
reliability to allow a simple calculation method of the strength reduction factor for

elements whose strength reduction factor is yet to be calibrated. This is achieved
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by comparing a pair of elements which experience the same failure mode and yet
only one holds a validated level of safety (i.e., strength reduction factor and
reliability index).

e This concept is put into practice by calculating flexural and shear strength
reduction factors for FRP reinforced concrete members by comparison with
conventional steel-reinforced concrete beams possessing the same ultimate
capacity.

e As a result, a revised set of strength reduction factors and deign provisions is
proposed for use in FRP design guidelines for shear and flexure.

By following these steps, this study introduces a method to extrapolate the strength
reduction factors of new construction materials from the experience gained with
conventional ones. Such a method, without compromising safety, prevents penalizing
new materials. Accordingly, this study attempts to develop consistency between the

flexural and shear strength reduction factors of ACI 318 and ACI 440 documents.

4.3 COMPARATIVE RELIABILITY
Let R; and R, be the resistance of two elements 1 and 2 with the same ultimate limit
state. The comparative reliability index, f., is defined as a measure of the probability of
element 1 possessing a lower level of resistance than element 2. Calculation of the
comparative reliability index of two elements is almost identical to calculation the of the
reliability index, f, for lognormal load and resistance variables found in Nowak and
Collins (2000) and Haldar and Mahadevan (2000); nevertheless, the procedure is

detailed here because of the modification due to the removal of load from the equation.
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The means of the random resistance variables R; and R, are denoted by u; and u, while
o1 and a,, respectively, denote their standard deviations. Since resistance can only take
positive values, it is believed to conform to lognormal distribution (Ellingwood and
Galambos 1982) and so do R; and R, Therefore, another lognormal random variable G

can be introduced as:

R

G = R (4.1)
In(G) = g = In(R,) — In(R;) 4.2)
The probability of the event R, < R; or p.=P(R; < R;) can be written as:
pc.=P(G<1)=P(g<0) (4.3)
In(R;), In(R,) and subsequently g are normal variables, therefore:
P(g < go) = ®(=9) (44)

Where gy is an arbitrary value, @ is the cumulative distribution function (CDF) of the
standard normal distribution, and x, and o, are, respectively, the mean and standard

deviation of g. Hence, by substituting go=0 in Equation 4.4:

o) -0(-2)

0 1s the coefficient of variation of g. Defining @' as the inverse function of @, Equation

4.5 can be rewritten as:

Z_j = —CI)_l(pC) = CI)_l(]_ - pc) = B¢ (4.6)

p. is the “comparative reliability index” and can be calculated in terms of the statistical
parameters of R; and R,. The relationship between the statistical parameters of a
lognormal variable, X, and its normal twin, In(X), is (Nowak and Collins 2000):

aﬁl(x) =In(1 + 632) 4.7)

www.manaraa.com



53

In(1+6%)

Jzn
Hingx) = In(uy) — =22 = In(uy) — ———* (4.8)

As R; and R are reasonably assumed to be statistically independent, from Equation 4.2 it
follows that:
Hg = Hin(r,) — Min(Rry) 4.9)
0§ = Oinery) T Tinry) (4.10)
Replacing the statistical parameters of normal variables In(R;) and In(R,) in Equations
4.9 and 10 with those written in terms of R; and R, using Equations 4.7 and 4.8, one

obtains :

uy =In [(Z—j) \/%l @.11)

o =In(1+67) +In(1 + 63) (4.12)

Where 6;= 5R1 and 6,= 5R2. Eventually, substituting Equations 4.11 and 4.12 into
Equation 4.6, ., can be formulated as:

2
m[(ii—i) /:Z%]
Min(Ry)—HMIn(Ry) __ 2

\/"fn(Rn*"lzn(Rz) Jln(1+55)+ln(1+6%)

Pe = (4.13)

4.4 RELATIONSHIP BETWEEN TARGET AND COMPARATIVE
RELIABILITY INDICES

The comparative reliability index, f., is merely an intermediary parameter, as it does not
reveal anything about the probability of failure which is measured by the reliability index

[ and its acceptable level, S, or target reliability.
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Next is to relate the comparative reliability index, f., to the target reliability, fr. The
conventional reliability index, S, for lognormal load (Q) and resistance variables (R; or

R») is defined as:

B(Q,R,) = -~ @ _ g (4.14)

Sin(ry) T Oin(Q)

Hin(Ry) ~HIn(Q)
B(Q,Ry) = —==fr (4.15)

ez oM@
In Equations 4.14 and 4.15, it is assumed that the target reliability, 7, or the expected
level of safety is equal for both elements. To eliminate the square root and separate R, or

R, from Q in Equations 4.14 and 4.15 an intermediary parameter, &, is introduced (Haldar

and Mahadevan 2000):

ot (R FOR
_ {%inen*ino 4.16)

g =
! OIn(R1) T91n(Q)

2 2
WI"In(Rz)“"ln(Q)
g, =— = (4.17)

OIn(R2)T01n(Q)

Similarly, to separate R, and R, in Equation 4.13:

2 2
{In@®y) *9in(ry)
ge=r— = (4.18)

Oln(R1) T 9In(Ry)
€1, & and g, vary in a narrow range (V2/2<¢<1.00); hence, if their values are comparable
which is a reasonable assumption, the following approximation can be made:
£~ &~ E (4.19)

Combining Equations 4.13 to 4.19, . can be rewritten as:

Oln(R,)—0 n(1+682)- 2
ﬁ ~ 2In(R2)™%n(R1) Jl (1 2) \/ln(1+61)
. R —

T — T
9In(R1) T 9In(Rz) \/m(1+5§)+ Jln(1+8§)

(4.20)

And from Equations 4.13 and 4.20:
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l \/ﬁl Jln(1+62) Jln(1+62)

Be = (4.21)
Jln(1+52)+1n(1+52) \/ln(1+62)+ \/ln(1+62)
Equation 4.21 can be further simplified by taking advantage of Taylor expansion:
x?  x3
In(1 + x) o e el if|x] <1 (4.22)

Assuming that dy <0.30, within a margin of error of about 2%, Equation 4.7 may be

simplified as:

Jln(x) = ﬂln(l + 6)% = 5X (423)

Hence, if both ¢, and 6,<0.30, which is a common situation, Equations 4.13 and 4.21 can

be simplified as:

_ ln[(”j—i)] _ 6276,

\/5§+5§ O1+02

Be Pr (4.24)

[ has concluded its part by assisting to establish a load free relationship between £ and
the statistical parameters of R, and R;, as formulated in Equations 4.21 or 4.24, which
are identified as the comparative reliability equations. The target reliability, £, has its
preset minimum values based on consequence of failure and incremental cost of safety as
shown in Table 4.1 for reinforced concrete members made of ordinary concrete (Nowak
and Szerszen 2003). Table 4.1 also presents the safety factors stipulated by ACI 318-11,
coefficients of variations (CoV or ) and bias factors (4). The latter parameter is defined

in the following section.
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4.5 CALIBRATION OF STRENGTH REDUCTION FACTORS

When rewritten as a function of the strength reduction factors, @, Equation 4.24 (or 4.21)
can be used calibrate to those factors. Structural elements 1 and 2 are comparable only if
they are equal in their ultimate design capacity or:

$1N; = PN, (4.25)
Where O, indicates the strength reduction factor and N; is the nominal strength (design
strength) of each element (i=1, 2). Element 1(e.g., steel RC beam) serves as the
benchmark for calibration of the safety factor of element 2 (e.g., FRP RC beam). In other
words, @ and the desired level of reliability, fr, are assumed to be known and @, has to
be calculated from them.
The bias factor, 4;, is defined as the ratio of the mean value, y;, to the nominal value, N;,

of a random variable or in this case R and R, therefore:

A = 1’;— (4.26)
1
R 1’3—2 (4.27)

It can be concluded from Equations 4.25 to 4.27 that:

ke _ 01k
U1 P24 (4.28)

If 6, and 6,<0.30, substituting Equation 4.28 into Equation 4.24 results in:

o2
\/6§+5§ 81462

Br (4.29)

If 6; or 0,>0.30, then the simplification of Equation 4.21 is not suitable and Equation

4.30 provides better accuracy than Equation 4.29:
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P17\ [1+6%
1
nl(¢zl1) 1+8§l \/ln(1+6§)—\/ln(1+6f)

= r (4.30)
\/ln(1+6%)+ln(1+6§) Jln(1+sg)+ \/m(1+5§)

In any event, @, can be calculated directly from Equations 4.29 or 4.30.

This concludes the first part of this chapter that deals with the introduction and
formulation of the comparative reliability. The following part takes advantage of this
concept to calculate the safety factors of concrete beams reinforced with FRP bars subject

to flexure and shear.

4.6 FLEXURE-CONTROLLED FAILURE OF FRP RC MEMBERS

A reliability analysis for FRP-reinforced beams in flexure using the load combination of
U=1.2D+1.6L for live to dead load ratios between 1 and 3, indicated reliability indices
between 3.5 and 4.0 when @ was set to 0.65 for both concrete crushing failure and FRP
reinforcing bar rupture failure (Gulbrandsen 2005). Based on these results, ACI 440.1R-
08, recommends a strength reduction factor of 0.55, if failure is due to FRP rupture, and
0.65 if failure is due to concrete crushing, with a linear variation in the transitional range
between the two failure modes. Table 4.2 summarizes the statistical data (bias factor and
coefficient of variation) obtained from tests discussed in detail in Gulbrandsen (2005), its
assumptions (minimum target reliabilities) and strength reduction factors adopted by ACI
440.1R-08.

Here the aim is to calibrate the FRP-RC strength reduction factors, not by using
conventional reliability analysis as in Gulbrandsen (2005), but by taking advantage of the
concept of comparative reliability. Using Equation 4.29, the strength reduction factors

can be calibrated proportional to those of a steel RC beam whose statistical parameters
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are given in Table 4.1(Nowak and Szerszen 2003). In other words, 4; and d, in Equation
4.29 correspond to the first row of Table 4.1, while 1, and J,, depending on the failure
mode, are taken from the two rows of Table 4.2 respectively. As a result, Table 4.3
displays the calculated values of the safety factor, @, for different assumptions of the
target reliability; however, only the first column ($#7=3.5) corresponding to the assumed
safety target of ACI 318-11 is of primary interest while the remaining columns are
merely presented to show the relatively low sensitivity of Equation 4.29 to the variation
in the target reliability.

Stability under alternative order of solution

To demonstrate the stability of Equation 4.29, a different approach for the former part is
presented here.

The strength reduction factor for the FRP rupture mode can be calculated according to
Equation 4.29 by comparing it to a steel RC beam as the benchmark which results in
0¥=0.70 if f7=3.5 (Table 4.3). Now, to calibrate the strength reduction factor of the other
mode (concrete crushing), the FRP rupture mode is considered as the benchmark
(©,=0.70, 4;=1.11 and £7=3.5 in Equation 4.29) unlike the previous section which used a
steel RC beam as the reference for both cases. If the results obtained by both approaches
concur, in other words if a chain rule can be established for the comparative reliability,
Equation 4.29 may be considered stable. This is necessary due to the approximate nature
of this equation and the possibility of accumulating errors at each stage of the
computation.

In this case 0, and J, are relative to the two modes of failure (0,=0.157 and 6,=0.158);

therefore, f.~0 (Equation 4.22) and from Equation 4.27 it can be concluded that @;4,=
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D,4; where 4;=1.11 and 4,=1.19 (Table 4.2). With 0#,=0.70, @, becomes equal to 0.75

which is consistent with the value given in Table 4.3.

4.7 VALIDATION OF THE PROPOSED METHOD

In the previous sections of this chapter, it is claimed that Equation 4.29 (or its more
accurate form Equation 4.30) calibrates the strength reduction factor of element 2 so that
it provides an acceptable fit for the reliability curves of the two elements, thus
eliminating the need for repeating all computations for element 2. To put this claim to test
and to understand the reason and consequences of behind the difference between the
strength reduction factors obtained in this study (Table 4.3, under £;=3.5) and those
stipulated by ACI 440.1R-08 (Table 4.2), the reliability index is calculated for the entire
range of the ratio of live load, L, to total load of dead plus live, D+L. To maintain
consistency with Gulbrandsen (2005), the design load combination is assumed to be
U=1.2D+1.6L and the values for statistical parameters of loads are taken from Nowak
and Szerszen (2003) and given in Table 4.4, columns 2 and 3. It is also assumed that the
design strength, @N, is equal to the ultimate load or required strength, U, so there is no
over or under-strength. The distribution of load variables is according to Ellingwood and
Galambos (1982) as shown in Table 4.4, column 4.

Instead of using the approximate Equations 4.14 or 4.15 that assume both load and
resistance conform to the lognormal distribution, the reliability index is calculated by the
more sophisticated iterative Rackwitz-Fiessler method which takes into account different
distributions (Appendix D). The results are plotted in Fig. 4.1 which demonstrates that

that the strength reduction factors of ACI 440.1R-08 achieve higher degrees of reliability
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than intended as represented by the two top curves. While the strength reduction factors
proposed in this study (i.e., ©,=0.70 and ©,=0.75), target a reliability index
approximately equal to that of a steel RC beam which in its turn is assumed to be
approximately between 3.5 and 4.0. The two virtually inseparable reliability curves
relative to the strength reduction factors derived in this study trail at a close distance the
steel RC reliability curve as their target reliability, providing evidence for the validity of
the comparative reliability method.

The validation may be further extended for other load combinations that include other
load types, namely snow (S), earthquake (£) and wind (W) for which the reliability
analyses of Gulbrandsen (2005) and subsequently ACI 440.1R-08 are silent. Although
the method presented in this study does not provide the exact value of the reliability
index, it guarantees that a safety performance comparable to that of a conventional RC
may be expected. To demonstrate this quality, another load combination from ACI 318-
11, e.g., U=1.2D+1.0L+1.6W may be considered. A combination containing wind load,
while not necessarily critical for RC beams, is merely chosen because of the relative ease
of applying the Rackwitz-Fiessler method to random variables that conform to the
extreme value type I distribution (e.g., live load and wind load, Table 4.4). The presence
of a third load component would necessitate a three dimensional representation of the
reliability surface as opposed to the reliability curves given in Fig. 4.1. For simplicity, it
is assumed that =0 thus U=1.2D+1.6W, which makes a two dimensional representation
possible. The statistical parameters of the wind load are shown in Table 4.4. Fig. 4.2
shows the reliability index over the total range of the ratios of the wind load to the total

load calculated by the Rackwitz-Fiessler numerical method. Again, the reliability curves
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associated with the safety factors calculated by the comparative reliability formulation
(Equation 4.29) maintain their proximity to that of the steel RC beam, while those based
on the strength reduction factors of ACI 440.1R-08 (the two top curves) indicate a more
conservative design approach when compared to ACI 318-11, something which might be
less than desirable. As for the case of Fig. 4.1, the two curves of the computed factors of

©,=0.70 and ©,=0.75 are to all effects overlapping.

4.8 SHEAR-CONTROLLED FAILURE OF FRP RC MEMBERS

ACI 440.1R-08 states that “The strength reduction factor of 0.75 given by ACI 318-05
for reducing nominal shear capacity of steel-reinforced concrete members should also be
used for FRP reinforcement.” which singles out this guideline among other codes of
practice for proposing a larger strength reduction factor for shear as compared to flexure,
and makes the need for validation more deeply felt. As always, the process of calibrating
the safety factors starts by obtaining the statistical parameters of the element type in
question. In this study, beams with or without transverse reinforcement (stirrups) are
investigated independently as follows:

Statistical database: Test results compiled by Miano (2011) in combination with results

from Matta et al. (2011) provide a statistical database for beams without stirrups which is
summarized in Table 4.5. A similar database for beams with shear reinforcement
(stirrups) is collected by Vitiello (2011) which is concisely displayed in Table 4.6.

FRP RC beams without stirrups: Based on the database summarized in Table 4.5,

statistical parameters of FRP RC beams without stirrups under shear failure are calculated
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as 1g=1.93 and 6z=0.238 (Table 4.7, first row). Appendix F details the calculation of
nominal shear capacity of such beams and their probabilistic parameters.

FRP RC beams with stirrups: Based on the database summarized in Table 4.6 statistical

parameters of FRP reinforced beams under shear failure are calculated as 1z=1. 64 and
0r=0.353 (Table 4.7, second row). Again, Appendix F provides an example of the
calculation of nominal shear capacity of the RC beams with FRP stirrups.

For each of these two cases, Equation 4.30 may be used (especially for the second case
where 0z>0.30) to calculate the shear strength reduction factor. Substituting the
probabilistic parameters of shear failure of a steel RC beam from Table 4.1 (0,=0.75,
A1=1.23 and 6,;=0.109) and an FRP RC beam from Table 4.7 (1, and o, from either of
the first two rows), the strength reduction factor for the latter can be calculated for any
presumed value of target reliability (the first two rows of Table 4.8) of which only the
first column that corresponds to f7=3.5 or the recognized safety level guaranteed by ACI
318, is of practical interest and the rest is only provided for comparison.

Evidently, the current shear safety factor of 0.75 is only justifiable for beam with no
shear reinforcing, while in presence of such reinforcement, a drastic modification (from
existing @=0.75 to no less than (#=0.49) is necessary. Instead, this study advocates a
modification to the limitations of shear design equation that eliminates the need for such
a substantial drop in the strength reduction factor while maintains the desired level of
safety.

Proposed modification to the FRP shear design equation limits

Redressing the issue of the strength reduction factor for beams with FRP stirrups requires

pinpointing the source of deviation in resistance, as the sizeable coefficient of variation of
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such elements (dz=0.353) is the major contributor to the uncertainty associated with their
strength that, subsequently, leads to a low safety factor.

Grouping the beams based on the level of shear reinforcement (V/V. or FRP to concrete
shear contribution) reveals a direct relationship between this value and deviation of
resistance as the 32-member group of beams with V', > 3V, was detected as the most
temperamental (0x=0.614 from Table 4.7). Consistent with ACI 318 and ACI 440.1R
approach, but using a lower threshold, it is proposed to limit shear reinforcement
contribution, Vy, to 3V.. By imposing a new ceiling on the combination of the two
components of the shear resistance, this modification excludes the set of elements with V',

>3V, from the sample population:

Vo=V + Ve if Ve <3l (4.31)
Vo, =4V, if V; > 31, (4.32)
Equation 4.32 is to cover those cases in which considerations such as achieving higher
ductility through a tight arrangement of stirrups, supersede those of demand.
Leaving out these 32 cases from the sample population (Table 4.6), the statistical
parameters are calculated for the remainder (Table 4.7, last row) with a considerable
improvement in consistency of behavior (dz decreases from 0.383 to 0.226). The strength
reduction factors are calculated anew using these fresh parameters which, when rounded,
show compliance with the current code at the safety level of f7=3.5 (Table 4.8, last row).
Similar to the flexural case, Fig. 4.3 and 4.4 show the reliability curves associated to this
strength reduction factor (©0=0.75 and V< 3V.). The curves confirm that for both load

combinations (U=1.2D+1.6L and U=1.2D+1.6W) and the limit state of shear, if V< 3V,
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then the reliability index of beams with FRP stirrups is comparable to that of steel RC

beams.

4.9 DISCUSSION
The results of the comparative reliability analysis of beams internally reinforced with
FRP bars measured against traditional steel RC beams may be summed up as follows:
e A flexural strength reduction factor of 0.70 is recommended for concrete beams
internally reinforced with FRP bars when the failure mode is FRP rupture.
e A flexural strength reduction factor of 0.75 would be justifiable for concrete beams
internally reinforced with FRP bars when the failure mode is concrete crushing. Although
this is higher than the strength reduction factor of 0.65 imposed by ACI 318-11 on
compression controlled sections, regardless of the reinforcement type, it is in agreement
with the factor recommended by Nowak and Szerszen (2003).
e Even though the aforesaid strength reduction factors were derived based upon
probabilistic consideration, they still submit to a traditional tendency of assigning a
smaller strength reduction factor to the FRP rupture mode of failure, the mode that is
presumed to be more sudden and brittle. Nevertheless, the considerable elongation of
FRP bars up to the point of rupture which can be translated into exaggerated deflections,
should FRP rupture govern the failure, provides enough warning prior to the abrupt
collapse and may remove the need for differentiating between the two modes.
e Taking into account the three points above, due to the closeness of the two strength
reduction factors a unified value of 0.70, irrespective of the failure mode, is

recommended as it simplifies design and guarantees a higher level of safety.
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e The current shear strength reduction factor of 0.75 may be maintained so long as the
maximum effective level of shear resistance is dictated by Equations 4.31 and 4.32, in
other words the nominal shear strength of a beam with FRP shear reinforcement must not

exceed four times the strength provided by concrete (V,< 4V, or equally V/<3V.,).

4.10 CONCLUSIONS

In the first part of this study, an alternative formulation of target reliability, fr, is
presented as a function of the resistances of two elements, unlike the conventional
representation of the reliability index which is a function of load and resistance.
Discarding the load parameters considerably simplifies calculations, as the need for
obtaining the reliability index curves for numerous load combinations comprised of
different load cases with different probability distributions is now circumvented. The
relative ease of finding the probabilistic parameters of resistance, as compared to those of
loads, as well as fewer uncertainties associated with resistance are additional advantages
of the elimination of loads from the equations.

In the second part of the chapter, this comparative method is used to calibrate the strength
reduction factors for design of concrete beams internally reinforced with FRP bars. As
opposed to the traditional calibration methods which require a painstaking trial-and-error
procedure of plotting the reliability curves for several load combinations over the
conceivable ranges of proportions of load components, the proposed method obtains the
strength reduction factor of the element of interest as an explicit function of the strength
reduction factor, statistical parameters and an identical target reliability of the benchmark

element. This is corroborated by the reliability curves of the benchmark elements (steel
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RC beam) and those of the elements of interest (FRP RC beam), that demonstrate an
acceptable fit between the two over a wide range of load ratios, if the strength reduction
factors for the latter are derived according to the comparative formulation.

The closing discussion enumerates: a) modifications to the strength reduction factors of
ACI 440.1-R08 associated with flexural elements (i.e., @=0.70 for both modes of failure);
and b) limitations to the shear strength of beams with FRP stirrups (i.e.,V/< 3V.). These
modifications ensure that a reliability level in compliance with the existing safety
provisions is attainable or simply put, FRP RC beams are “as safe” and “as reliable” as
the common steel RC beams.

The same procedure may be employed to calibrate the strength reduction factors
associated with other RC elements, reinforced with FRP material such as columns or

externally strengthened with FRP material.
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Table 4.1: Strength reduction and statistical parameters of cast-in-place steel RC beams

Limitstate 0% g,  Bias()® CoV(6)?®
Flexure” 0.90 3.5 1.190 0.089
Shear 0.75 35 1.230 0.109

(DTension controlled
@ACI318-11
) Nowak and Szerszen (2003)

Table 4.2: Strength reduction and statistical parameters of FRP reinforced beams subject

to flexure
Limit state o o® pr?  Bias()@ Cov(o)?
FRP rupture 0.55 0.65 3.5 1.11 0.157
Concrete crushing 0.65 0.65 3.5 1.19 0.158

(DACI 440.1R-08
@Gulbrandsen (2005)

Table 4.3: Calculated strength reduction factors for FRP RC beams subject to flexure for

different target reliabilities

Strength reduction factor (@)

Limit state Lr=3.5 pr=4.0 pr=4.5
FRP rupture 0.70 0.69 0.67
Concrete crushing 0.75 0.73 0.72
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Table 4.4: Statistical parameters for load components

Load component Bias (1) CoV(6)" Distribution®
Dead load (cast-in-place) 1.05 0.10 Normal
Live load 1.00 0.18 Type I
Wind Load 0.78 0.37 Type I

(UNowak and Serszen (2003)
@ Ellingwood and Galambos (1982)
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Table 4.5: Experimental database of flexural elements without FRP stirrups'”

Longitudinal FRP
Ref No. of fe b dy : S exp
elerence Specimens ksi (MPa) in. (mm) in. (mm) Ey ksi (GPa) pg (%) kips(kN)
Nagasaka et al. 5 3.3-5.1 9.8 10.1 8120 1.90 18.7-25.4
(1993) (22.9-34.1) (250) (265) (56) ' (83.0-113.0)
Tottori and 5 6.5-6.8 7.9 12.8 8410-27850 0.70-0.90 10.6-22.0
Wakui(1993) (44.6-46.9) (200) (325) (58-192) ' ’ (47.0-98.0)
Maruyama and 4 4.0-5.1 59 9.8 13340 0.55-2.00 8.3-13.0
Zhao (1994) (27.5-34.9) (150) (250) 92) ' ’ (37.0-57.8)
Maruyama ) 5.0 5.9 9.8 15230 1.51-2.00 10.1-10.3
and Zhao (1995) (34.3) (150) (250) (105) ' ’ (45.0-46.0)
Nakamura and ) 3.3-4.0 5.9 5.9 4210 1.30-1.80 7.4-8.1
Higai(1995) (22.7-27.8) (150) (150) (29) ' ’ (33.0-36.0)
Maruyama 3 43-49 59-11.8 9.8-19.7 14500 107 6.4-31.5
and Zhao (1996) (29.5-34.0) (150-300) (250-500) (100) ’ (28.5-140.0)
Vijay et al. 1 6.5 7.9 10.4 7830 1.40 10.1
(1996) (44.8) (200) (265) (54) ’ (45.0)
Duranovic et al. 4 3.8-5.5 5.9 8.3-8.7 6530 130 4.9-6.0
(1997) (26.3-38.1) (150) (210-220) (45) ’ (22.0-26.5)
Mizukawa et al. ) 5.0 7.9 10.2 18850 130 13.9
(1997) (34.7) (200) (260) (130) ’ (62.0)
Swamy et 5 4.9-5.7 6.1-10.0 8.7 4930 1.55-1.60 4.4-8.8
Aburawi(1997) (34.0-39.0) (154-254) (222) (34) ’ ’ (19.5-39.0)
Deitz et al. 5 3.944.5 12.0 6.2 5800 0.70 6.1-6.5
(1999) (27.0-30.8) (305) (158) (40) ’ (27.0-29.0)
Alkhradji et al. 3 3.5 7.0 11.0-11.3 5800 0.77-2.00 8.1-12.0
(2001) (24.1) (178) (279-287) (40) ’ ’ (36.1-53.4)
Ospina, et al. 3 42-54 84.6 4.7 4930 0.73-1.46 46.3-260
(2001) (28.9-37.5) (2150) (120) (34) ' ’ (206.0-
Yost et al. 19 5.3-5.5 7.0-12.0 7.6-8.9 5800-5950 036-2.00 6.0-11.5
(2001) (36.3-38.0) (178-305) (192-225) (40-41) ' ’ (26.7-51.0)
Frosh 5 5.8-6.2 18.0 14.9 5510-7690 1.00-2.00 41.3-77.6
(2002) (39.8-42.6) (457) (379) (38-53) ’ ’ (183.7-
El Ghandour et al. 3 49-8.4 78.7 6.9 6530-15950 0.15-0.30 38.2-71.3
(2003) (34.0-58.0) (2000) (175) (45-110) ) ’ (170.0-
Gross et al. 12 11.5 6.0-8.0 8.9 5800 1.25-2.00 6.8-10.9
(2003) (79.6) (152-203) (225) (40) ' ’ (30.4-48.3)
Tariq and 1 49-6.3 5.1-6.3 12.2 6090-17400 0.70-1.50 9.7-13.0
Newhook(2003) (34.1-43.2) (130-160) (310) (42-120) ' ’ (43.0-58.0)
Benmokrane 14 5.8-7.3 9.8-39.4 6.1-12.8 5800-18850 0.39-2.00 13.5-42.7
(2004) (40.0-50.0) (250-1000)  (154-326) (40-130) ’ 7 (60.0-190.0)
Gross et al. 12 8.7-11.8 3.9-6.3 5.6 20160 033-0.76 2.0-5.2
(2004) (60.3-81.4) (89-159) (141-143) (139) ’ ’ (8.8-23.1)
Lubell et al. | 5.8 17.7 38.2 5800 050 30.6
(2004) (40.0) (450) (970) (40) ’ (136.0)
Razagpur et al. 6 5.9-7.1 7.9 8.9 21030 0.25-0 88 8.1-10.6
(2004) (40.5-49.0) (200) (225) (145) ’ ’ (36.1-47.2)
El-Sayed et al. 10 6.3-9.1 9.8 12.8 5660-19580 0.87-2.00 13.5-39.1
(2005) (43.6-63.0) (250) (326) (39-135) ’ 7 (60.0-174.0)
El-Sayed et al. 3 5.8 39.4 6.3-6.5 5800-16530 0.39-2.00 25.4-42.7
(2005) (40.0) (1000) (159-165) (40-114) ' ’ (113.0-
Guadagnini 5 5.8-6.5 5.9 8.8 6530 1.8 6.1-10.0
et al. (2005) (40.3-44.9) (150) (223) (45) ’ (27.2-44.7)
Wegian and 1 4.4 39.4 6.4 6090 077 17.2
Abdalla (2005) (30.0) (1000) (162) (42) ’ (76.5)
Ashour et al. 6 42-7.3 5.9 6.4-10.4 4640-5510 045-1.39 2.8-6.7
(2006) (28.9-50.2) (150) (163-263) (32-38) ' ’ (12.5-30.0)
El-Sayed 6 6.3-7.3 9.8 12.8 5800-18850 0.90-1.70 13.5-28.1
et al.(2006) (43.6-50) (250) (326) (40-130) ' 7 (60.0-125.0)
Kilpatrick et al. 9 7.0-13.3 16.5 2.9-3.0 6090 0.68-1.16 5.2-7.6
(2006) (48.0-92.0) (420) (73-75) 42) ' ’ (23.1-33.9)
Kilpatrick and 1 8.8-13.5 16.5 3.13.3 5800-6090 0.61-2.00 4.4-9.0
Easden (2006) (61.0-93.0) (420) (79-83) (40-42) ) ) (19.5-40.0)

Continued on the next page
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Table 4.5: Continued

No. of Vit b d Longitudinal FRP V
Reference . Ksi ¢ L . - i e’ﬁ’N
Specimens ksi (MPa) in. (mm) in. (mm) Ej ksi (GPa) py(%) ips(kN)
Valerio et al. 4 72 43 59 18850 0.93 4.8-5.6
(2006) (49.8) (110) (150) (130) ' (21.3-25.1)
Matta et al. » 43-87 45-180  5.75-34.76 5950-6240 (s g 23-36.5
(011) (29.5-59.7)  (114-457)  (146-883) (41-43) P8 (10.1-162.2)
33-135  3.50-84.60 2.87-3819  4060-27850 2.0-77.6
Total 196 (22.7-93.0)  (89-2150)  (73-970) (28-192) 015200 4 5 345.0)

DMiano (2011) and Matta et al. (2011)
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Table 4.6: Experimental database of flexural elements with FRP stirrups'"

FRP bars FRP stirrups
No. of fe b drord, Efor E; pg Ey P Sru Vexp
. 2 . . . . . . .
Reference Spec1mens( ) ksi (MPa) in. (mm) in. (mm) ksi (GPa) (%) ksi (GPa) (%)  ksi(Mpa) kips (kN)
Nagasaka et al. 3358 9.84 996 812027270 6530-16680 71.1-133.4 36.4-82.3
(1993) 29(4) (23.0-40.3) (250) (253) (56-188)  031-1.90 @s-115)  950-130 400.020)  (162.0-366.0)
Tottori and 43-10.4 591-7.87  9.84-19.69  8410-29880 5220-19870 86.7-53.1 13.0-51.8
Wakaui (1993) 291 (294-716) (1502000  (250-500)  (58-206) 03200 (36-137) 006034 sop1745)  (58.0-230.5)
Maruyama and 44-5.6 5.91 9.84 13630 13630 189.7 13.3-26.9
Zhao (1994) ? (30.5-38.3) (150) (250) (94) 0.55-2.00 (94) 0.12-0.24 (1308) (59.0-119.5)
Maruyama and i 5.0 5.91 9.84 15230 512,00 5660-14500 02 159.5-188.5 12.2-28.3
Zhao (1995) (34.3) (150) (250) (105) Dl (39-100) : (1100-1300)  (54.4-125.9)
Nakamura and 4852 7.87 9.84  4210-26100 4500 120.1 12.6-36.0
Higai (1995) 8 (33.4-35.8) (200) (250) (20-180) 161172 31 0.14-0.35 (828) (56.0-160.3)
Vijay et al. A 45-6.5 5.91 10.43 7830 0.4 7830 0.62-0.93 157.8 25.9-28.6
(1996) (31.0-44.8) (150) (265) (54) (54) (1088) (115.0-127.0)
Maruyama and . 43-49 591-17.72 9.84-29.53 14500 . 4350 0.43.0.86 87.0 24.1-132.6
Zhao (1996) (29.5-34.0)  (150-450)  (250-750) (100) : (30) 43-0. (600) (107.0-590.0)
Alsayed et al. 5.1-5.7 7.87 1220 5220-29000 6090 81.9 15.4-32.5
(1997) 40 (35.5-39.6) (200) (310) 36200y 097137 42) 0.21-0.40 (565) (68.5-144.4)
Duranovic et al. 5 46 5.91 8.66 6530 130 6530 035 108.8 11.0-15.0
(1997) (31.8) (150) (220) (45) : 45) : (750) (49.0-66.6)
Shehata et al. 48-7.8 531 1850 19870-29000 5950-19870 92.8-250.9 62.4-84.4
(1999) 86) (33.0-54.0) (135) (470) (137200) 123132 @1-137) 020 017300 (277.5-375.5)
Whitehead and S 8.1-9.3 433 3.94-7.87 8700 0 8700 0.19-0.80 203.1 10.1-13.5
Tbell (2005) (55.6-63.9) (110)  (100-200) (60) : (60) A19-0. (1400) (45.0-60.0)
33-104  433-17.72  3.94-29.53  4210-29880 4350-19870 71.1-253.1 10.1-132.6
Total 118 27) (23.0-71.6)  (110-450)  (100-750)  (29-206) 31200 (30-137) 0061304901745y (45.0-590.0)

Dyitiello (2011)
@ The number in parentheses indicates the number of specimens with longitudinal steel bars instead of FRP bars.
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Table 4.7: Strength reduction and statistical parameters of FRP reinforced beams subject

to shear
Shear reinforcement o Pr Bias (1) CoV(9)
V=0 (no stirrups) 0.75 3.5 1.93 0.238
no limit on V' 0.75 3.5 1.64 0.353
V>3V, 0.75 3.5 1.22 0.614
Vi<3V. 0.75 3.5 1.80 0.226

(1 ACI 440.1R-08

Table 4.8: Calculated strength reduction factors for FRP RC beams subject to shear

for different target reliabilities

Strength reduction factor (@)

Limit state pr=3.5 pr=4.0 pr=4.5
V=0 (no stirrups) 0.84 0.80 0.76
no limit on V' 0.49 0.45 0.41
V<3V, 0.77 0.73 0.70
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Figure 4.1: Reliability indices for beams made of ordinary concrete under flexure; load

combination U=1.2D+1.6L
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Figure 4.2: Reliability indices for beams made of ordinary concrete under flexure; load

combination U=1.2D+1.6 W
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Figure 4.3: Reliability indices for beams made of ordinary concrete under shear; load

combination U=1.2D+1.6L
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Figure 4.4: Reliability indices for beams made of ordinary concrete under shear; load

combination U=1.2D+1.6 W
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CHAPTER 5

5.STUDY IV: STRENGTH REDUCTION FACTORS FOR FLEXURAL RC
MEMBERS STRENGTHENED WITH NEAR-SURFACE-MOUNTED BARS
5.1 BACKGROUND

Assigning a strength reduction factor to RC members externally strengthened with FRP
bars presents the code writers with a dilemma: on the one hand, any reduction factor has
to address the very legitimate and yet, as will be explained later, frequently misconceived
notions arising from adding to an RC members a new material, (e.g., FRP bars) whose
behaviour exhibits more unpredictability than reinforcing steel. On the other hand, such a
factor has to observe continuity, continuity being the sameness of the ultimate strength of
an unstrengthened RC member with that of the same member with an infinitesimal
amount of strengthening, a requirement which, needless to say, is violated should a
smaller reduction factor be imposed on strengthened members. ACI 440.2R-08,”Guide
for the Design and Construction of Externally Bonded FRP Systems for Strengthening
Concrete Structures”, has opted for an alternative solution: maintaining the strength
reduction factors as stipulated by ACI 318, (e.g., ©=0.90 for a tension-controlled flexure)
and dictating a partial reduction factor to the contribution of FRP, e.g., y~=0.85 for a
section subject to pure bending. Historically, the primary reason for this approach was to
allow for the use an “emerging” material system whose behaviour was not fully
understood and proven. This method, although logical and effective, is today

unsatisfactory, unsatisfactory as it constitutes a departure from ACI’s approach of
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applying holistic reduction factors to the strength of members, and unsatisfactory because
it resonates more as an “ignorance” factor than a safety factor, for it is designed mainly to
alleviate non-quantified concerns and is derived chiefly by engineering judgement.

The seeming inescapability of a smaller reduction factor for FRP strengthened members
stems from the belief that due to the higher randomness of the mechanical behaviour of
FRP as compared to steel, and also the uncertainties associated with the installation of
FRP, such member is necessarily more temperamental than an ordinary RC member, in
other words adding FRP should lead to a build-up of uncertainties. This, however, might
not always be true. Counterintuitive as it may sound, according to basic statistics,
introducing a random variable into a system of random variables might very well reduce
the deviation of the whole system, even if the newly added variable has a greater
randomness than the former system. The simplest of such cases may be explained by two
independent random variables with equal means and coefficients and variation. The sum
of the two forms another random variable with a variation of about 70% of the variation
of each of its components and, therefore, is more, not less, deterministic. When FRP
strengthened RC members are concerned, the likelihood of such relaxations in
uncertainty cannot be discounted.

It also should be noted that owing to the provisions of the guidelines (ACI 440), FRP
components, compared to steel bars, commonly reserve a higher portion of their capacity
between the point of their nominal strength to the point of their actual failure, i.e., rupture
for FRP or yield for steel. In statistical terms FRP bars have a higher bias factor which

can act as a pre-applied or hidden safety factor for them.
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A combination of such arguments and other considerations related to the cost of repair,
prompted the authors of this study to investigate the subject anew, for flexural members
strengthened with near-surface mounted (NSM) FRP bars, by taking advantage of
reliability analysis and computerized simulation techniques.

In this study, using a comprehensive test matrix of flexural members processed with the
computerized Monte Carlo simulation technique, the probabilistic implications of
applying FRP to RC beams and slabs, as near-surface-mounted (NSM) reinforcement, are
investigated. The statistical data generated are then employed to recommend revised
strength reduction factors for flexural RC members strengthened with NSM FRP bars,
covered by ACI 440.2R-08, that are styled after the ACI 318 building code, do not
compromise safety and yet do not impose needless restraints on benefiting from the full
capacity of the strengthening system. By doing so not only a consistency among ACI
documents can be achieved, but also repairs can be made satisfactorily safe and cost-

effective at the same time.

5.2 OUTLINE
This study discusses the items below sequentially:
e The structural model of the strengthened RC members is discussed.
e The statistical model is defined based on the structural model and its variables and
their descriptive parameters are introduced.
e The Monte Carlo simulation technique is briefly discussed.

e The statistical model is analysed via the Monte Carlo technique.
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e The reliability analysis is employed to calculate the strength reduction factors for
strengthened flexural members so that they achieve the same level of safety of
ordinary RC beams and slabs.

e Recommendations about the modification of strength reduction factors are
presented that allow for the elimination of the partial factors.

These steps break down the original unwieldy task of assessing the uncertainty of the
complicated behaviour of a strengthened member into a series of smaller, more
manageable questions of evaluating the uncertainties associated with each component and
parameter contributing to the resistance of the member such as its materials, its
dimensions, etc. None of these steps is absolutely judgment-free, yet anytime an
engineering judgment is made, for want of information or statistics, it will be quantifiable
and so will be its effects on the eventual outcome, making the methodology easily

repeatable when richer experimental databases become available.

5.3 STRUCTURAL MODEL
The nominal flexural capacity of flexural RC members externally strengthened with FRP,
of which NSM system is a subset, may be calculated as the sum of the strengths provided
by each reinforcement component, the contribution of steel, M,,, and the contribution of
FRP, M,
M, = Mys + My (5.1)
Where each term on the right of Equation 5.1 is a function of resistance variables

calculated according to Chapter 10 of ACI 440.2R-08:

My = f(4s, fy; féib,ds, ay, Bry Ecus Ebi) (5.2)
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My = g(As, frw Kmo Ep, 5 b, df, a1, Br, Ecus Ebi) (5.3)
The symbols are defined in Notations. It should be noted the two components of
resistance in Equation 5.1 are not totally decoupled, for, as a result of the repositioning of
the neutral axis, M, declines ever so slightly as M, increases.
Modes of Failure
According to ACI 440.2R-08 two distinct modes of failure govern the behaviour of the
externally FRP strengthened members and thus affect the calculation of Equations 5.1 to
5.3. The first mode is initiated by the crushing of the concrete in compression and occurs
when the compressive strain in concrete reaches the maximum usable value of ¢.,=0.003.
The debonding of the FRP bars initiates the second mode, which is similarly identified by
the tensile strain of FRP system reaching the maximum level which can sustain the bond
between the concrete and FRP bars. This maximum is referred to as the debonding strain
or gz, which is discussed later in this study. Reinforcing steel, also, may or may not
have yielded at the point of failure, thus dividing each of the two aforesaid modes into
two sub-modes, resulting in a total of four failure modes.
In this study, using the customary assumptions of the linearity of the plane sections in
bending and compatibility of strains, the conditions that distinguish between these modes
are derived based on the design parameters of the member. The reinforcement indices for

steel and FRP, w; and w/, are defined as:

_ Asly | _ Affra
s = 1oa,” “F T Flba, 54

Note that the denominator is the same for both parameters and f;; is the stress in FRP
corresponding to the debonding strain, e¢z. The two modes can be predicted by

comparison to the balanced condition:
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ws = wyp:Concrete crushing 55
{wf < wsp: FRP debonding (5.3)
@y, depends on whether steel yields or not:
(0.85p, 2L —o— — o, : if steel yields.
s ccuTefdTepi
w = dg ds
fb 0.85 ﬂ e B <E>(€fd+£bi)—<l—d—f)£cu. £ steel d ' vield
L 850 FRP——— Ws -~ : if steel doesn't yield.
(5.6)
wgp, separates the yielding sub-modes when concrete crushing is the case:
{ws < Wgp: steel yields 57
Ws > Wgp: steel doesn't yield (3.7)
Where:
a a
L Ecut L Esy—Epi
wsp = 0.850) —=— — w; (g Jeeur(@eor=er (5.8)

EcuteEsy £fd
In Equations 5.6 and 5.8, &, is the strain level in the concrete substrate at the time of FRP
installation and in practical cases varies, based on the loading, in the approximate range
of 0.0005~0.001, while for the lab-made specimens normally &,,=0. For simplicity and
uniformity, in this study the latter value is assumed for every case investigated, knowing
that this assumption slightly over-predicts the resistance, if the member is deflected at the
time of installation, but has less effect on the randomness of its behaviour which is the
focus of this study.

Equations 5.4 to 5.8 confirm, as it could be expected, that the increase in steel
reinforcing, w,, and FRP strengthening, @/, increase the likelihood of the first mode of
failure, i.e., concrete crushing. Generally speaking, debonding is the dominant failure

mode and concrete crushing is normally confined to the infrequent case of heavily-

reinforced, heavily-strengthened beams.

www.manaraa.com



81

5.4 STATISTICAL MODEL

In lieu of test results upon which the statistical parameters of the flexural capacity, partial
(M,s and M,y) and total (M,), can be established, these parameters are to be calculated
from the combination of the factors that generate uncertainty in resistance. Each source of
uncertainty is defined by its bias factor (4, the ratio of the mean to the nominal value of a
random variable), coefficient of variation (0 or CoV) and probabilistic distribution type.
The following recounts how these data are collected from the literature or assumed by
judgement.

Sources of uncertainty

Material factor: Although defined by its unique nominal or design value, the actual

strength of a material is a random variable whose mean and standard deviation may be
related to its nominal value from experimental data. Table 5.1 lists the probabilistic
identifiers of materials and each item is briefly discussed here:

f’¢: The compressive strength of concrete is not typically the controlling in the flexural
capacity of a member, thus only the most common of concrete types is considered, the
statistical parameters of which are taken from Novak and Szerszen (2003).

J»: Grade 60 steel (f,=60 ksi or 414 MPa) is the common type of reinforcing bars used in
RC construction. Novak and Szerszen (2003) provides the statistical data.

Jr: ACI 440 modifies the guaranteed tensile strength of FRP reinforcement, f fuis Dy @
reduction factor, 0.70<Cg<1.0 based on the fiber type and conditions of environmental

exposure:

fru = Cefru (5.9)
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Jru» the tensile strength of FRP bars or laminates is then a decisive factor in determining
the flexural strength. In this study it is assumed that Cg regardless of its value is pre-
applied and therefore only f} takes part in the computations. Ignoring a potential source
of uncertainty in Cg is deemed to be mitigated by ACI 440.2R-08 statement that its
recommended values are ‘“conservative estimates”. In other words, in reality FRP
material might be slightly more volatile and yet in contrast slightly stronger than what
this study presumes.

Unlike steel and to some extent concrete producers that comply with well-established
standards, FRP manufacturers protocols are less controllable. This leads to a variation in
the mechanical characteristics of FRP products which in turn, makes acquiring an
objective assessment of the probabilistic parameters of FRP materials a challenging task,
as the test samples are usually biased towards the products and manufacturers they
represent. In this study, it is assumed that FRP products exhibit a level of consistency of
characteristics higher than that of concrete and yet lower than steel, which is the most
predictable of construction materials. This assumption confines FRP’s coefficient of
variation between those of concrete and steel (i.e., 0.05<0<0.10). For FRP bars, circular
or rectangular, 6=0.08 is selected as a reasonable estimate. A bias factor of A=1.20 that
corresponds to such a deviation, according to Gulbrandsen (2005), completes the couple.
Two generic types of FRP are assumed with type 1 having significantly higher tensile
strength and modulus of elasticity than type 2.

E: The statistical data is according to Gulbrandsen (2005).

km: FRP debonding is the dominant failure mode of the strengthened members. The

debonding strain and stress of the NSM reinforcement, ¢; and f}; , are defined as:
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&a = Km€ru 5 fra = Kmfru (5.10)
For NSM reinforcement, ACI 440.2R-08 states that 0.60<x,,<0.90, “depending on many
factors such as member dimensions, steel and FRP reinforcement ratios, and surface
roughness of the FRP bar” and recommends the use of x,=0.70. Assuming a simple
uniform random distribution over that range, the statistical parameters are estimated. The
coefficient of variation of 0.115 makes the debonding factor, x,, the major source of

material uncertainty.

Fabrication Factor: The variations in dimensions and geometry fall under the category of
the fabrication factor. These parameters as shown in Table 5.2 are generally based on
Novak and Szerszen (2003), except for those discussed below:
c: The concrete cover to steel reinforcement center is assumed to be statistically
independent of the effective depth of steel bars, but with the same probabilistic
parameters of bias and variation.
dy: The effective depth of external FRP, with negligible approximation, is estimated as:
df =ds+c (5.11)
Therefore, dr is a random variable whose nominal and mean value and its standard
deviation depend upon ¢ and d and their relative magnitude. Also note that higher
variation and smaller bias factor for the effective depth and concrete cover differentiate
slabs from beams.
b (for slabs):The unit width of strip used in the analysis and design of the slabs is
assumed to be a deterministic parameter.

Ay: The statistical data for the FRP bars is according to Gulbrandsen (2005).
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Professional factor: is the ratio of the actual to theoretical behavior, and is applied to steel

and FRP contributions independently. In mathematical terms, these factors (material,
fabrication and professional) boil down to the statistical model of:
R =Rs;+ R (5.12)

Where, R, the total flexural strength of the member is a random variable comprised of
steel and FRP random contributions, R, and R:

Ry = PMg; Ry = P My (5.13)
M, and M, are random variables whose nominal values are M,, and M, (Equations 5.2
and 5.3), and contain the collective effect of the material and fabrication factors. P; and
Py are the random variables representing the professional factor and account for the
uncertainties associated with analysis parameters (e.,, a; and £) that are presumed to be
deterministic. The probabilistic parameters of P, (i.e., 4 and J) are according to Novak
and Szerszen (2003). The same parameters are deemed by the authors to be applicable to
Pr; however, to remain reasonably conservative the bias factor (A) for FRP is lowered to

1.00 (Table 5.3).

5.5 SIMULATION MATRIX
Table 5.4 shows a summary of the simulation matrix. Thirty two sets of slabs and thirty
sets of beams, divided equally between the two types of FRP specified in Table 5.1, are
simulated. Each set contains 5 members, one unstrengthened member and 4 with different
levels of strengthening applied to that, resulting in a total of 310 simulated members. All
the unstrengthened members, that represent the common designs, are tension controlled

in flexure, according to ACI 318-11. This can be easily confirmed by the limits of steel
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ratios, p,. The focus is, of course, on the flexure and other types of resistance, shear and
torsional, are assumed to be sufficient.

A very limited number of simulations pertain to the strengthening range of 100-150%;
however, the utmost level of strengthening is generally restricted to approximately 100%,
which means that the nominal flexural capacity may, as a maximum, be nearly doubled

by strengthening. This is consistent with the limit imposed by ACI 440.2R-08, Chapter 9.

5.6 MONTE CARLO SIMULATION
Monte Carlo method technique is employed to generate samples of numerical data (e.g.,
resistance) from which the statistical parameters such as mean and standard deviation, or
equally bias factor and coefficient of variation, may be calculated. Appendix G provides
an example of how this technique is employed in this study. Tables 5.5 and 5.6 contain
examples of the results of such simulations. For each design, in addition to the nominal
values of resistance, the statistical parameters are also calculated by the Monte Carlo

simulation.

5.7 RELIABILITY ANALYSIS AND CALCULATION OF STRENGTH
REDUCTION FACTORS

The strength reduction factors are calibrated based on the comparative reliability equation

elicited from Chapter 4:

ln[¢NSM ARc ]
drc Ansml _ Orc—Onsm (514)

= Br
1[ Ssm+ORe Onsm+0re

Equation 5.14 relates the strength reduction and statistical parameters (9, 4 and J) of an

NSM member, denoted by the subindex NSM, to those of an ordinary RC member with
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the subindex RC, which acts as the benchmark, if the same level of safety or target
reliability of fr is expected from both member types. In this study, the benchmark RC
members are assumed to have the same statistical characteristics of resistance of the
member prior to strengthening. Tables 5.5 and 5.6 can be recalled to clarify the subject.
These tables display sample simulated sets of five members. The first row of each set,
i.e., the unstrengthened or the ordinary RC member constitutes the benchmark member.
The benchmark reduction factor for each member is calculated according to ACI 318-11
and the safety levels of f7=2.5 for slabs or f7=3.5 for beams are selected according to
Novak and Szerszen (2003). The failure mode predicted by the design (nominal) values is
denoted by mode I for concrete crushing and mode II for debonding. The last column is
the ratio of the reduction factor of the strengthened member, @Qysy; to that of an RC

member, D¢, calculated according to Equation 5.14.

5.8 DISCUSSION

Investigation of the results

A general observation can be made from the results of the simulations, represented
partially by Tables 5.5 and 5.6: the FRP contribution has a higher deviation and higher
bias factor than the steel contribution. This, nevertheless, is a forgone conclusion due to
the higher bias and deviation associated with FRP as a material. Further generalizations
may be drawn by a more in-depth look at the results:

Slabs: The variation of the strength of the strengthened member is normally lower than

the variations of each of its components. This is mainly attributable to the variation
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reduction mentioned in section 5.1 and accounts, partially, for the increased reduction
factors compared to the unstrengthened members (cases with @ sy, / Qre >1.0).

Beams: The fabrication factors of beams, as opposed to those of slabs, have a markedly
lower randomness, which results in the more deterministic behavior of the beams which
1s reflected in their lower coefficients of variation. In the case of beams, the addition of
FRP generally increases the variation when the failure is governed by concrete crushing.
For debonding failures, the trend is mainly similar to that of slabs which undergo the
same failure mode.

Aside from these general statements, a pattern must be detected in the calculated strength
reduction factors so that they can be formulated for practical use.

When steel yields, Equations 5.5 and 5.6 can be easily reworked to predict the failure
mode based on the ratio of the collective reinforcement index, w,twy, to the parameter,

@y, defined in this study as:

W, = 0.858 L Eou (5.15)

ds Ecu+efa+epi
wp, marks the combination of the steel and FRP indices which results in the simultaneous
FRP debonding and concrete crushing, if steel has already yielded. If (v twys)/w,<1.0,
the debonding mode governs the failure; else, failure is initiated by the concrete crushing.
This ratio can also be interpreted as an indicator of the deflection before failure. The
growth of (wstwys)/w;, leads to smaller deflections before the flexural failure and vice
versa. Therefore to formulate the @ factor, members were regrouped based on this ratio.
Fig. 5.1 and 5.2 display the reduction factors calculated against the strengthening levels
for two of such groups, ie., 1.05(wtw/)/wp<2.0 and 2.0< (wstw))/wp<4.0,. It is

observed that for the group with (w+tws)/w,<1.0, or those that fail by debonding, the
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calculated strength reduction factor is almost always larger than @Qgc. One exception is
presented in the last row of Table 5.5 which is, admittedly, a design far from normal. As
shown graphically, by the totally conservative approach of finding the lower boundary of

the points a reduction factor can be suggested as:

, 1.0 if 220 < 1.0
NSM b
—= = (5.16)
Prc l_ézg: ifwzz_()
9 9 wp
Where, 4, is the strengthening level:
A — MTL|strengthened_MTL|unstrengthened (517)

Mp |unstrcngthcncd

And for values of 1.0 < (w,twys)/w,<2.0 a linear interpolation is satisfactory.

Example
As an example, the procedure of the calculation of the ultimate flexural strength,
M,-@OM,, for one of the beams in Table 5.6(Set 2, fourth row) is detailed here:

Flexural capacity, M, calculations:

Mstrengthened”

From the beam and material properties (Tables 5.1 and 5.6) the reinforcement indices
(Equation 5.4) can be calculated as: ©,=0.1500, w~0.1524, assuming that £;,=0.00.
Equations 5.7 and 5.8 are used to check if the steel yields:

wg= 0.3857>w,; therefore, steel yields.

Debonding can be checked by equations:

@,=0.1865, (ws+ ws)/wp=1.62>1.0; no debonding is expected and concrete crushing is
the failure mode.

In this study the design equations governing this mode of failure (concrete crushing and

steel yielding) are derived as:
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Stress ratio in FRP:

2
<w5 Scu+£bi> ,34B1 gcu 9f _($+Ecu+€bi)
f _f_f_ (Uf Efd (Uf Efd dS (A)f Efd

fra 2

<1 (5.18)

fr 1s the stress in FRP. The steel contribution is calculated as:

/ s+f
My = f'es (1= 2222 pa? (5.19)

And the contribution of FRP:

’ d s+f
My = f foy (d—f — 24290 pa (5.20)

Substituting the corresponding values into Equations 5.18 to 5.20:
f=0.667, M,=1473.7 kip.in (166.5 kN.m), M,~1187.8 kip.in (134.2 kN.m), and
according to Equation 5.1: M,,=2661.5 kip.in (300.7 kN.m).

Strength reduction factor according to ACI 440.2:

M, = Q)RC(Mns + wanf) (5.21)
Where:
0.65 < P = 0.65 + 0.25% < 0.90; Y=0.85 (5.22)
. —&sy

g5 1s the strain in steel reinforcement which can be calculated from the compatibility of

strains:
€5 =5 (ferq +ep) — (1 —Degy = & (5.23)
ds ds Y

£,=0.0056; therefore, D xc=0.90 and M,=2235.0 kip.in (252.6 kN.m).

Strength reduction factor according to this study:

The strength reduction factor is calculated from Equation 5.16:
(wstwp)/wp=1.62>1.0; therefore, 8/9<0 ysrs /D rc<1.0 and the strengthening level, 4,

must be computed.
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From conventional reinforced concrete design:
My lunstengenca = £ s (1= 22) bd? = 15772 Kip.in (178.2 kN.m) (5.24)

And according to Equation 5.17 the strengthening level is: 4=0.69. From Equation5.16:
if (wstwy)/wp=2.0; then, D ysi /D rc=1.0-(0.69)/9=0.923
The strength reduction factor is obtained by interpolation:
O Nsu/Dre=(1.62-1.00)(0.923)+(2.00-1.62)(1.0)=0.952 (compare to the value of 0.962
obtained by the reliability analysis, i.e., Equation 5.14 and Table 5.6.)
D rc=0.90; therefore, O ys1,=0.857
And, eventually, M,=0yNs;:M,=2281.0 kip.in (257.7 kN.m), slightly higher than ACI
440.2 recommendation.
Table 5.7 summarizes similar calculations for the beams of Table 5.6.
Comparison with ACI 440.2
A direct comparison between the strength reduction factors obtained in this study
(Equation 5.16) with that stipulated by ACI 440.2R-08 (Equation 5.22) might not seem
very streamlined. Nevertheless, if the question is approached from a practical point of
view the issue can be greatly simplified. The lower values of the current reduction
factors from ACI 440.2 are relatively of low practical importance due to a series of
reasons, including:
e They require low levels of strain on the tension side of the flexural member
which can be translated into low levels of stress in the strengthening system and
its decreased efficiency. Such a situation may defeat the idea of strengthening in

the first place.
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e The overwhelming majority of the members in need of strengthening are lightly
reinforced, either because of their nature, like slabs, or because of the reason that
originates the requirement of repair, like under-designed beams. Such designs,
always, lead to large deformations on the tension side.

e Mainly due to the installation hardships, the additional strength gained by adding
FRP hardly ever goes beyond 50%, with the normal values revolving around 20
to 25%. This again means less restraint for the member and comparatively large
deflections on the tension side.

Tables 5.6 and 5.7 portray these arguments in a more tangible form: Set 1 is composed of
a lightly-reinforced RC beam (p,=0. 5% slightly higher than the minimum permissible by
ACI 318, puin=0. 35%) with different degrees of strengthening, 4. Set 3, on the other
hand is heavily reinforced (p,=1.5%) and, unlike Set 1, for the strengthening levels of
Table 5.7 requires OQpc factors of smaller than 0.90, according to ACI 440.2. A
comparison between the relative ratios of FRP to steel (4/4, in Table 5.6, or more
comprehensively w/qw, in Table 5.7) confirms the much higher efficiency of the
strengthening in Set 1. The absence of any slabs and the rarity and the relative
impracticality of the beams that require a factor lower than 0.90 by ACI 440.2 in the
simulated designs confirm that @c=0.90 may be regarded as the most applicable
strength reduction factor recommended by the guideline, which, certainly, has to be
applied in combination with its partial reduction factor of y,=0.85 imposed on the FRP

contribution.
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5.9 CONCLUSIONS
Based on this discussion, a simple and general comparison between the two proposed
factors for NSM systems, can now made:
e For lightly reinforced and strengthened flexural members, this study recommends
a reduction factor of 0.90 and eliminates the ACI’s partial factor of 0.85.
e For other cases, this study recommends a variable but unified reduction factor
that, roughly speaking, has the equal effect of the double factor of ACI 440.2.
The obvious advantages can be restated as the increased cost-effectiveness without
risking the safety and restoring the tradition of ACI in applying the reduction factors to
the overall strength of a member and not to the individual materials.
This study concentrates on the NSM systems; however, other types of installation, such
as pultruded plates and in-situ lay-up and other limit states such as shear and axial force
may be investigated in the same manner, provided that the data concerning their

uncertainties are reliably provided or estimated.
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Table 5.1: Statistical parameters for materials

93

Material Property Ng:;:;al B(;:;s CoV(0) Distribution

Concrete'" /. ksi (MPa) 40(27.6) 124 010  lognormal

Steel bars'!  f, ksi (MPa) 60 (414)  1.145  0.05 lognormal
fiksi (MPa) 250 (1725) 1.20¥) 0.08®)  lognormal
E ksi (GPa) 20000(138) 1.04® 0.08®  lognormal

FRP bars® fiksi (MPa) 90 (620) 1209  0.08®  lognormal
E/ksi (GPa)  6000(41) 1.04® 0.08®  lognormal

Km 0.70 1.071 0.115 uniform
(DNowak and Szerszen (2003)
@Gulbrandsen (2005)

Table 5.2: Statistical parameters for dimensions of concrete, steel and FRP

Item Member Bias (1) CoV(d) Distribution
1 beam 0.99 0.04
d:" slab 0.92 0.12 lognormal
c beam 0.99 0.04 lognormal
slab 0.92 0.12
b beam'” 1.01 0.04 lognormal
slab 1.00 0.00 deterministic
A,V beam, slab 1.00 0.015 lognormal
AP beam, slab 1.00 0.03 lognormal

(DNowak and Szerszen (2003)

@Gulbrandsen (2005)
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Table 5.3: Statistical parameters of professional factors

Ttem ominal () CoV(d) Distribution
value

p,D 1.00 1.02 0.06 lognormal

Pr 1.00 1.00 0.06 lognormal

UNowak and Szerszen (2003)

Table 5.4: Summary of simulated members

Strengthening Number of

Member d;in. (mm) dyin. (mm) b in. (mm)  ps (%) Level (%) members
2.5-10.5 4.0-12.0 12.0 0 & 1103

Slabs 6a267) (102305 (05 0203 20-110 160
9.5-27.5 12.0-36.0 8.0-24.0 0.5-1.5® 20-150® 150

Beams  941.699)  (305-914)  (203-610)

(;)pSZAs/bdf
@)y =A,/bd,
¢ )Approximate range.
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Table 5.5: Examples of results for NSM strengthened slabs per unit width of 1.0 ft. (305 mm)

Total strength
Slab Properties(l) Steel contribution FRP contribution (NSM)
Strengthening Failure )

d dy A, AP MO 2 o M,/ 2 o M, 2 0 level (%) mode" Onsw/Dre
& in. in. in? in? kip.in kip.in kip.in

(mm) (mm) (mmz)
_ 0.00 380 1090 0188 00 - - 380 1.090 0.188 0 2 1.000
s 001 372 1.085 0.189 102 1.205 0200 47.4 1.111 0.175 25 I 1.043
L Tty (s 002 371 1086 0191 203 1206 0200 573 1128 0172 5l I 1,064
¥ 003 369 1.086 0.190 303 1.205 0.198 67.2 1.139 0.170 77 I 1.079
< 0.04 368 1.085 0.190 403 1.207 0200 77.1 1.149 0.172 103 I 1.083
- 0.00 1087 1.087 0176 00 - - 1087 1.073 0.176 0 i 1.000
s 0.02 1068 1.087 0.174 269 1.207 0.199 133.6 1.111 0.163 23 | 1.059
L (28(‘)2) (16655) ?ég;; 0.04 1062 1.085 0.177 53.5 1206 0202 159.8 1125 0.165 47 Il 1.070
2 0.06 1057 1.085 0.177 80.0 1205 0.200 185.7 1.137 0.164 71 I 1.081
< 0.08 1052 1.082 0.177 1062 1201 0.198 211.4 1.142 0.165 95 I 1.084
» 000 2346 1.087 0.167 00 - - 2346 1.077 0.167 0 i 1.000
S 0.04 230.8 1.086 0.169 66.6 1.207 0.201 297.3 1.113 0.160 27 I 1.047
L 12(;'2 28156 03"(‘)%0 0.08 229.1 1.083 0.170 132.3 1.201 0.198 361.4 1.126 0.160 54 I 1059
':\é( VIO GOD 015 2274 1.079 0172 197.3 1.187 0200 4247 1.129 0.165 81 I 1052
< 0.16 225.6 1.080 0.175 261.4 1.161 0.204 487.0 1.123 0.174 108 I 1.031

Continued on the next page
S
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Table 5.5: Continued

Total strength
Slab Properties(l) Steel contribution FRP contribution (NSM)
Strengthening Failure 4
2 dp do A, AS AS MY a6 MY 2 s M level (%) ® mode®) OrswPrc”
- m. m. n° In in.”  kip.in kip.in kip.in
(mm) (mm) (mm?)
N 0.00 430.7 1.086 0.163 0.0 - - 430.7 1.080 0.163 0 - 1.000
S 12.0 0.06 424.4 1.086 0.168 118.9 1.203 0.203 543.3 1.112 0.160 26 I 1.036
L (305 62 (46s) 012 420.6 10 0170 236.0 1180 0.205 6565 L117 0.165 52 I 1.031
;\2 ) 0.18 416.6 1.078 0.169 351.0 1.136 0.209 767.6 1.105 0.172 78 I 1.008
~ 0.24 4122 1.075 0.172 463.7 1.077 0.224 8759 1.076 0.186 103 11 0.958
(DOther properties according to Table 5.1.
@ERP type 1 from Table 5.1.
O concrete crushing, II: debonding
@ According to Equation 5.14 with #7=2.5
1.0 kip.in=0.113 kN.m
K
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Table 5.6: Examples of results for NSM strengthened beams

Total strength S
Beam properties(l) Steel contribution FRP contribution (NSM) §
Strengthening Failure X
W b df ds As Af(Z) Mns(S) A o Mnf(S) A 0 Mn(S) A 0 level (%) mode(3) S
& in. in. in. in? in? kip.n kip.in kip.in o
(mm) (mm) (mm) (mm?) B
- 0.00 207.0 1.165 0.095 0.0 - - 207.0 1.159 0.095 0 - 1.000
) 80 120 95 038 0.075 204.3 1.164 0.095 54.2 1.292 0.161 258.5 1.189 0.087 26 II 1.049
L ' ‘ ‘ 0.15 203.0 1.163 0.096 107.7 1.288 0.158 310.7 1.204 0.089 52 II 1.054
5. (203) (305) (241) (245)
2 0.225 201.6 1.162 0.097 160.8 1.272 0.150 362.4 1.208 0.092 78 II 1.052
~ 0.30 200.2 1.160 0.098 213.2 1.246 0.143 413.4 1.202 0.094 103 II 1.040
o 0.00 1577.2 1.161 0.093 0.0 - - 15772 1.170 0.093 0 - 1.000
) 120 180 155 1.86 0.60 1529.1 1.173 0.095 569.4 1.080 0.169 2098.5 1.148 0.091 33 I 0.986
L ' ' : 1.20 1497.9 1.176 0.095 922.4 1.098 0.167 2420.4 1.147 0.097 53 I 0.971
= (305) (457)(394) (1200)
2 1.80 1473.7 1.178 0.096 1187.8 1.102 0.161 2661.5 1.144 0.099 69 I 0.962
~ 2.40 1453.6 1.178 0.095 1402.6 1.104 0.160 2856.2 1.142 0.102 81 I 0.953
w 0.0 6497.3 1.171 0.094 0.0 - - 64973 1.171 0.094 0 - 1.000
) 180 24.0 215 5.805 2.50 6256.2 1.177 0.095 1733.9 1.099 0.202 7990.1 1.160 0.096 23 I 0.984
L ' PP 5.00 6098.7 1.183 0.096 2802.9 1.107 0.192 8901.6 1.159 0.101 37 I 0.971
o, (457) (610) (546) (3745)
X 7.50 5978.0 1.182 0.097 3588.9 1.115 0.187 9566.9 1.157 0.106 47 I 0.959
=~ 10.00 5878.9 1.184 0.099 4211.3 1.124 0.181 10090.3 1.159 0.110 55 I 0.950
Other properties according to Table 5.1.
@FRP type 2 from Table 5.1.
OI: concrete crushing, II: debonding
®According to Equation 5.14 with 87=3.5
©1.0 kip.in=0.113 kN.m
O
-
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Table 5.7: Ultimate strength of the beams in Table 5.6

- 1.0 MO O

Set. @, o, o (0o, k]g.in kji‘g.{n kip.in (5/’0) Ore OnsulOrc™ Onsw i3 Lin'in
0000 037 2070 00 2070 0 0900 1.000 0900 1863 1863

0016 045 2043 542 2585 26 0900 1.000  0.900 232.7 2253

I 0203 0075 0.031 052 2030 107.7 3107 52 0900 1.000 0900 279.6 265.1
0.047 060 2016 1608 3624 78 0.900 1.000  0.900 3262 304.5

0062 067 2002 2132 4134 1030900 1.000  0.900 372.1 3433

0000 080 15772 00 15772 0 0900 1000  0.900 1419.5 1419.5

0051  1.08  1529.1 569.4 20985 33 0.900 0997  0.897 18833 1811.8

2 0.186 0.150 0.102 135  1497.9 9224 24204 53 0.900 0979  0.8812133.1 2053.8
0.152  1.62 14737 1187.8 2661.5 69 0.900  0.952  0.857 2281.0 2235.0

0203 1.89  1453.6 1402.6 28562 81 0.899 0.919  0.826 2360.2 2378.0

0000 126 64973 00 64973 0 0900 1.000  0.900 5847.6 5847.6

0.102 182 62562 1733.9 7990.1 23 0.879 0979  0.860 6872.0 6791.0

30179 0225 0203 239 6098.7 2802.9 8901.6 37 0.804 0.959  0.771 6859.6 6815.9
0305 296  5978.0 3588.9 9566.9 47 0.757 0.948  0.717 6860.0 6832.7

0407 353 58789 4211.3 10090.3 55 0.724  0.939  0.679 6852.9 6344.4

(I)anMns+ Mﬂf

@According to Equation 5.16
¢ )Mu=® ~nsuM,: According to this study
DM, =0 rc (M,+0.85M,,): According to ACI 440.2R-08

1.0 kip.in=0.113 kN.m
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Figure 5.1: Calculated strength reduction factors for beams with 1.0<(w +w f)/a) ,<2.0.

(Only points with @ ysy/Dre <1.0 are shown.)

Oysu/Drc
1.000

0.990
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0.950 et c.
94 N\
0.940 8/9<@ i1/ Dpc=1-0/9<1. \":J,
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0.910

0.900 -
Strengthening level [(%)

0850 N 1004
0.880

()

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00

Figure 5.2: Calculated strength reduction factors for beams with 2.0<(w,+w/)/w,<4.0.

(Only points with @ ysy/Dre <1.0 are shown.)

www.manharaa.com



CHAPTER 6

6. CONCLUSIONS

The results and findings of this thesis are concisely recapitulated in Table 6.1 and
itemized as:

e Study I, analytically, formulates the live load factor as the function shown in the
first row of Table 6.1. It also obtains approximate values for the life-time
modification coefficient, «.

e Study II, benefits from the numerical methods to find more accurate values of «.

e Study III, introduces the “comparative reliability” concept and with that
calculates new flexural strength reduction factors for beams and slabs internally
reinforced with FRP bars (Table 6.1). It also concludes that @ factor of 0.75, for
shear, can be maintained if a stricter limit is imposed on maximum shear
reinforcement with FRP stirrups.

e Study IV, obtains a flexural strength reduction factor that is exclusively
calculated for NSM FRP bars, which is an enhancement to the current guideline
that uses a @ factor meant for steel RC flexural elements in combination with the
wrfactor.

Further Investigation
The four studies that constitute this dissertation conform to a similar pattern of

introducing a general methodology followed by its application to an especial case of

100
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interest. Other cases, however, can now be investigated taking advantage of the
theoretical basis laid by these studies:
e The life-time of a structure may be incorporated into other time-dependent load
cases such as wind and earthquake, using the methodology detailed by Studies I
and IL
e (Current North American design guidelines do not cover columns internally
reinforced with FRP bars. The structural reliability of such members may be
analyzed according to the procedures detailed in Studies III and IV in order to
obtain their associated calibrated reduction factors.
e Study IV can be further advanced to include other types of external strengthening

of RC members with FRP materials as well as other ultimate limit states.
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Table 6.1: Summary of the results compared to the values in codes in practice

Study Subject of study Parameter of concern According to ACI According to this thesis
ACI318-08 . _ ) _ n\] @

Iand I RC clements Live load factor vy, = 1.60 Y1, = 1.60 [1 + kln (50)]
Flexure, FRP rupture: @=0.55 © 0=0.70
Strength reduction factors Flexure, Concrete crushing:0.55 <@#<0.65 0=0.75"

ACI 440.1R-06 s 4
I tRrP RC elements Shear: ©@=0.75 ) 0=0.75
Maximum shear = (6) <2y @
reinforcement Vr = 8\/febd Vp=3¥
v Asfrlei“?ﬁiﬁe‘gg Strength reduction factor Overall: 0.65<@ ys=B<0.90 7 8/9< B s/ Drc <1.0
& for flexural NSM systems FRP: y=0.85 ®) wr1s removed.

RC elements

D ACI 318-08:9.2.1

@ y is the expected life-time (years), « is according to Table 3.4.
) ACI 440.1R-06:8.2.3

@ Section 4.9

) ACI 440.1R-06:9.1.1

©) ACI440.1R-06:9.2.3

) ACI 440.2R-08:10.2.7 (Equation 5.22)

® ACI 440.2R-08:10.2.10(Equation 5.22)

® Equation 5.16
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APPENDIX A: STUDY I - DETAILS OF CALCULATION OF TARGET

RELIABILITY INDEX

The nominal values in Equation 2.28 are related to their mean values by:

HUR
Ry =—
UD
D =—
Ap
Ky,
L==
AL

(A1)

(A2)

(A3)

Equation A3 is the equivalent of Equation 2.20 for the special case of n=50. Equation

2.26 is formulated for a single load; therefore, the right-hand side of Equation 2.28 may

be revised in terms of a single total load variable, O, with a nominal value of Qy, a load

factor of y and a bias factor of 49, as Q is the sum of two independent variables Qp, dead

load, and Q;, live load:

Ov=D+L
)

YQn =vpD +y.L
$Ry = vQn
v, 4o and dp, depend on p , the ratio of live load to total load:

L L

P =5 o

From Equations A7, A9 and A11 with yp=1.2 and y;=1.6, one obtains:

106

(A4)
(A5)
(A6)
(A7)
(A8)
(A9)

(A10)

(Al1)
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y=0A-p)yp tpy, =12+ 0.4p (A12)
Similarly by substituting from Equations Al, A2 and A8 into Equation AS, it can be
rewritten as:
AoQn =ApD + AL (A13)
And therefore, substituting from Equation A11 and Table 2.2:
Ao =1 —p)Ap + pA, =1.05-0.05p (A14)
Equation A6 can also be written as:
(1eb0)* = (upbp)* + (up6.)? (A1S5)
Substituting bias factors and nominal values from Equations A2, A3 and A8 into
Equation A15, one obtains:
(20Q@n8g)* = (ApD8p)? + (A,L5,)? (Al6)

Hence as, from Equation A11 and Table 2.2:

28 = I = P)Ap0p 12 + (pA,5,)% = [0.105(1 — p)I% + (0.18p)2 (A17)
With the factor and the probabilistic parameters of the total load calculated, the next step
is to calculate the reliability index. The limit state function G(Q,R) can be written as:

GQR)=R-Q (A18)
It is more convenient for calculations to be carried out in terms of dimensionless

variables. Therefore Equations A1, A8 and A10 are reworked as:

Ho _ KR _
$lq VAR # (A19)

The dimensionless variables of resistance, , and load, ¢, can be defined as:
)
q="3 (A20)

R

r= (A21)
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And their statistical parameters are:
Hq =52 = Pho; 0q = = PAody; 8¢ = &g (A22)
Uy =55 =YAg; 0y = 22 = yAgby; 8, = b (A23)

Equally, the limit state function can be defined in terms of ¢ and 7:
G(qr)=1r—¢q (A24)

Using Equations A22 and A23, the reliability index can be expressed as:

Ur—H YAR—pA
Pso = L = -0 (A25)
oot [ransny+(@1g80)”

By means of Equations A12, A14, A17 and A25, the reliability index can be calculated
for any given ratio of live to total load for a 50-year life-span, which is regarded in this

study as target reliability, S, for that loading condition.
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APPENDIX B: STUDY I - DETAILS OF CALCULATION OF LIVE LOAD
FACTOR

Similar to Equation A25, the reliability index for a life span of n years (f,) can be

obtained as:

Yndr—dag,
Bn = =< = Bso (B1)
J(ynaR6R>2+(¢AQn6Qn>2

The time-dependent parameters, identified by subscript n can be calculated by
generalizing their counterparts derived in Appendix A:

Yo = =p)yp +pyL, (B2)
Which characterizes the general form of Equation Al12. Similarly, time can be

incorporated into Equations A14 and A17 as:

Ao, = (1 =p)Ap + pAy, (B3)

Ao,00, = J[(1 — p)ApSpl? + (pALn5Ln)2 =,/[0.105(1 — p)]2 + (0.18p)2 = 1,6,

(B4)

Noting that in Equation B3, 4, is derived from Equation 2.22. Also, Equation B4 is
simplified using Equations 2.24 and A17.

Although Equation Bl can now be solved for the exact value of y,, a simple

approximation technique can be used to render it separable and obtain a less complicated

final solution (Haldar and Mahadevan 2000) by introducing an intermediary variable, &,:

J (YnARSR)2+(PAg, 50,2

YnARSR+PAq, 60,

€n (BS)
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Since all the parameters in Equation B5 are positive, then V2/2<¢,<1.00. Also according
to Equation B4, for a given p, the term (g, dg,) is constant, therefore within a small
margin of error &, can be assumed to be constant and equal to its value at n=>50:

&, ® Exp (B6)

Based on Equations B5 and B6, Equation B1 can then be written as:

'Vn/lR_d)/lQ
= n = B7
Bn €50 YnARSR+$A000,) Bso (B7)

Which can be solved for y, as:

Yo = Aon 1+£50B5000n (BS)

AR 1-&50P500R

If n=50, the subscript » may be dropped and Equation B8 may be written simply as:

AQ 1+£50ﬁ505Q
=¢p——— B
r=¢ AR 1-¢€50B500R (B9)

Equations B4, B8 and B9 result in:

Ag, 1+€ [ Ag,tE g6
Yn _ AQn 1+€50B5080n _ AontesoBsotedq (B10)

14 Ag 1+e&s50B508¢ AgtesoBsolgdo

This can be solved for Y1, as:

_ v ul
Vi = Vi + 0145 In() (B11)

Which can be summarized as:

Vi, = 16[1+xn (%)) (B12)

0.0875y

K= 1Q+£50ﬁ501Q8Q (B13)

x 1s the “life-time modification coefficient”.
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APPENDIX C: STUDY I - SIMPLIFIED METHOD FOR CALCULATION OF
LIFE-TIME MODIFICATION COEFFICIENT

Equation B13 can be simplified by replacing the parameters ¢s9 and S5y with constant
values:

The separation parameter, €59, can be approximated with sufficient accuracy, as 0.75.55o
may be replaced by f7, the desirable level of reliability index i.e., for the limit states of
Table 4: f=3.5 for beams, f7=2.5 for slabs and f;=4.0 according to Novak and Szerszen
(2003). Let f7=4.0 and ¢50=0.75, Fig. C1 shows x as a function of p, which for normal
loading cases (0.5< L/D <2.0) averages at 0.09, with negligible deviation. Thus it is
reasonable to substitute x in Equation 2.30 with the unique value of 0.09 to cover all the

ultimate states and live load ratios (Equation 2.31).

0.10
K
0.09 —

0.08 ——
0.07

0.06
0.05
0.04
0.03
0.02
0.01
0.00

p=L[(D+L)
0.00 0.10 020 030 040 050 060 070 0.80 0.90 1.00

Figure C1- life-time modification coefficient (x) vs. live load ratio (57=4.0 and &50=0.75)
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APPENDIX D: STUDY II - RACKWITZ-FIESSLER METHOD
The Rackwitz-Fiessler method is an iterative procedure whose cycles consist of two
major steps: first, finding the “design point”; and, second, calculating the “equivalent
normal” values of the mean and standard deviation for each non-normal variable. The
input data of the Rackwitz-Fiessler are the “real” mean and standard deviation of the non-
normal variables of the limit state function, G(Q,R)=R-Q. R is the resistance and load, Q,
as assumed earlier, is constituted of dead and live load components, Qp and Q; (For a
complete list of symbols see NOTATIONS). For the ease of calculations, these variables

may be replaced by their dimensionless counterparts:

q=d+1 (D)
_Q. g%, _%
q—ﬂ,d u'l . (D2)
Where  is defined as:
— Ho _ Qv
p=gt=14 (D3)

p stands for the ratio of design live load, L, to total load, Qy, or:

p=—=— (D4)

T D+L Qn
Which in combination with Equation D3 results in:

D L
= == D
a-p)¢  po (D3)

U
Replacing the nominal values of loads by their means, using the definition of bias factor,
it can be obtained that:

UD UL
- - D
H=mein  porr (D6)

Hence the statistical parameters of @, / and g can be calculated as:
Ha =2 = (1= p)pAp; 0g = =2 = (1= p)pApSp; 64 = 6p (D7)
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wo="tE=ppliio =2t =ppA,b.; 6 =6, (D8)
Hq = ta + 1 (D9)
o; =0f +0f (D10)

The statistical parameters of 7, the dimensionless form of resistance, R, are taken from

Appendix A (Equation A23) and repeated here:

My = F=yAg; 0y =1 =yAby; 8 = b (D11)
With the input data calculated the details of the two aforesaid iterative steps of the

method are as follows:

First Step: Design point

The design point, x (¢", '), can be defined as the closest point of the function G(g, r)=r-
q=0 to the origin, when G is formulated in terms of reduced variables of load and

resistance, z, and z,.

zg=— (D12)
q
zr == (D13)

z4 and z, possess a mean of 0 and a standard deviation of 1. This shortest distance (i.e.,
between the design point and origin) is then equal to the reliability index, f (Fig. D1).
For an arbitrary limit state function, the general approach to this step is the
implementation of the Lagrange multipliers method and numerical or trial-and-error
solution of the resultant equations (Nowak and Collins 2000). In this study, that deals
with a linear limit state function, an alternative and more conceptual solution is presented

that circumvents the Lagrange multipliers and yields closed-form solutions:

G(zq,zr) =r—q= (ur - ,uq) + 2,0, — 240, =0 (D14)
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From Fig. A1 it can be concluded that:
G(Z;;,Z,’f) = (ur — ,uq) + 270, — 2404 = 0 (D15)
(23)? + (z7)* = B* (D16)
While the reliability index, f, is conventionally defined as:

g =t (D17)

24 52
o7 +0o

H

By solving Equations D15, D16 and D17 the reduced design point can be calculated as:

x _ 9 (MT_M )

20="zrar (D18)
* —or(Ur—Hq)

Zy = To}%q (D19)

Mapping (zq*, zr*) into (g, r) coordinates using Equations D12 and D13, the design point

(q*, r*) is found as:

2 2
% _ % _ Mrogtuqoy
Q=1 = (D20)
q r

¢ must be decoupled to its two components (4, I). To this end, the limit state function

G(d, 1, r)=0 that describes a plane in the (d, /, r) space must be reformulated in terms of

their reduced variables, (z4, z;, z,):

G Lr)=r—(d+D)=0 (D21)
Zg = d;—:d (D22)

l_
7 = Tl‘” (D23)

The reduced form of  is calculated from Equation D13. Substituting these reduced forms
into the limit state function (Equation D21) and simplifying it with Equation D9, the limit

state plane in the (z4, z;, z,) space is describable as:

G(24,21,2) = (U — Hg) + 2,0, — 20y — 2304 = 0 (D24)
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As mentioned earlier, by definition, the closest point of this plane to the origin is the
reduced design point, z ( z4 , z;, z, ), while its distance from the origin is equal to the
reliability index, f:
(za)? + (2))* + (z7)* = B* (D25)
It can be derived from Equations D16 and D25 that:
(2a)? + (2)* = (23)° (D26)
Equation D1 can be expressed in terms of reduced variables as well:
tq + 2404 = (Ua + 2q04) + (W + Z,07) (D27)
Combined with Equation D9, Equation D27 may be simplified as:
Zq04 = Zq04+2,0; (D28)
Naturally, Equation D28 must be satisfied at zq*( zd*, zl*) as well:
Zg0q = Zg0q+2; 0} (D29)
Where zq* can be obtained from Equation D18.The two conditions stated by Equations
D26 and D29 may have a geometrical interpretation similar to that of the definition of
reliability index and design point shown in Fig. D1, which is plotted in Fig. D2.
Substituting from Equation D10 into the two Equations D26 and D29 they can be solved

* *
forz, andz, as:

« _ 0d s _ 0d(Ur—Ugq)
Zg =5 2q = Tz (D30)
q r q
« _ 01 _x _ 01(r—Hgq)
Z; —J—Zq —W (D31)
q r q

By substituting values of z; and z;” into Equations D22 and D23, the load components of

the design point are finally calculated as:

2
d" = pa + oz (e = Ho) (D32)

0,
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=+ s G = ) (D33)
It should be noted that:

r'=d" + 1" (D34)
Which conforms to Equation D20.

Second Step: Equivalent normal parameters

This step requires the replacement of the mean and standard deviation, ux and oy, of a
non-normal variable X of the limit state function, G, with “equivalent normal parameters”
1y and 6%y, that possess the same values of PDF and CDF at the design point x". X can
be any of the live load, /, or resistance, », variables. This can be translated into

mathematical terms as (Nowak and Collins 2000):

0f = = b@ 7 (Fx(x)] (D33)

ug = x* = ag[®7 (Fx(xM)] (D36)
Where ¢ is the PDF for the standard normal distribution and @' is the inverse of the
CDF for the standard normal distribution. Fy and fy indicate the CDF and PDF of the
variable X respectively. For the EVD Type I load variable of /, the equivalent parameters
can be calculated by substituting its CDF and PDF (Study I) into Equations D35 and D36.
If arbitrary-point-in-time live load is of concern, probability functions of the gamma

distribution are to be used:

fx (@) = 2K s (D37)
Uy = k6 (D38)
o = k6? (D39)
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For the lognormal variable, », or resistance, Equations D35 and D36 can be further

simplified as (Nowak and Collins 2000):

Oy =710 (D40)
ug =7r*[1=1In(r") + e (D41)
Where:
oy = In(1 + 67) (D42)
O-lzn(r)
Hinir) = ln(lflr) -5 (D43)
Iteration

When the equivalent parameters are calculated, step 1 must be repeated anew, using the
equivalent values to find a new design point, from which new equivalent parameters are
calculated. This cycle must be repeated until the desirable convergence is achieved. The
following recapitulates the procedure:

1. For any given value of p, the “real” statistical parameters of load and resistance
are calculated from Equations D7 to D11.

2. The design point is calculated from Equations D32 to D34.

3. The reliability index is calculated from Equation D17.

4. The equivalent parameters of live load and resistance are calculated from
Equations D35 and D36 for live load and D40 and D41 for resistance. Dead load
is already a normal variable and needs no alteration in its parameters.

5. Steps (b) to (d) are repeated, with the new equivalent parameters replacing the old

ones (from the previous cycle) until both £ and design point converge.
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Limit state function

* _O-r(ﬂr - .uq)

" o? + o}
Ur — Uq

Oy

Zy

—_—,

Safety
G(zy, z/)=0
% g, q (.ur - ﬂq)
Zg =7 2
0 oy + 04 R
| I -
1
1
: Uy — .uq
: oq

D7 = (o)

Design point

Failure

Figure D1- Definition of reliability index and design point in the space of reduced

variables
Z]
A
Oq
zZ)=—z; —
O-l *
(9] (ZerZl)
* Kb o - - - -
Zl = _Zq %
O'q Zdo-d+ZlO'l = ZqO'q
o
04
* *
Zd —_ _Zq I
Oq
g,
q _«
Zg = —2Z
04 q

Figure D2- Geometrical display of reduced components of load at the design point
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APPENDIX E: STUDY II - MONTE CARLO SIMULATION
The general procedure for generating random samples, x;, of a variable X with an
arbitrary distribution of Fx(x) may be described by (Nowak and Collins 2000):
x; = Fy'(w) (ED)
Where u; is a sample of a uniformly distributed variable between 0 and 1, and F' v is the
inverse of Fy. For each set of randomly generated samples of load and resistance, (d;, /;,
r;), the limit state function, G;, is calculated and the probability of failure is estimated as:
P=— (E2)
Where Ny is the number of failures observed (i.e., events of G;<0) and N is the total
number of simulations or the sets of random samples. The reliability index follows the
conventional definition:
B =—-"1(P) (E3)
@' is the inverse of the cumulative distribution function (CDF) for the standard normal
distribution.
The accuracy of the probability estimates, needless to say, depends heavily on the
number of simulations. To assess this accuracy, it should be noted that the estimated
probability, P, is a random variable itself whose mean, up, and coefficient of variation,
op, are related to the theoretically correct probability, P,., by (Nowak and Collins

2000):

1—Prrye
Up = Prye; 6p = ’N(Ttme) (E4)

Knowing that P, although unknown, is relatively small and assuming that the sample

size, N, is large enough so that P~ P,.,., Equations E2 and E4 can be combined as:
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8p ~ ﬁ_f (ES)

Which is used as the indicator of accuracy in this study. To calculate the target reliability
indices for cases similar to those presented in Table 3.1, each simulation is repeated until
400 events of failure are recorded (N/=400) which corresponds to a variation of 5.0
percent (0p=0.05), a variation deemed small enough to justify the use of the outcomes as
credible pointers towards the precision of calculations. The total number of required
simulations, hence, varies approximately from N=4x10* (if P=1x107 or p=2.3) to
N=4x10"* (if P=1x10"" or p~6.4), certainly increasing as the probability of failure

decreases or equally the reliability index increases.
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APPENDIX F: STUDY III - CALCULATION OF NOMINAL SHEAR
STRENGTH OF BEAMS AND THEIR STATISTICAL PARAMETERS

The nominal shear capacity, V,, is calculated according to Chapter 9 of ACI 440.1R-08.
o=V, + 7 (F1)
Where V. and V' are the contributions of concrete and FRP stirrups respectively:
v, = (g) 2k[fIbd, (F2)
Where f°. is the compressive strength of concrete, b is the width of the beam, d is the

effective width and £ is the ratio of depth of neutral axis to reinforcement depth, d:

ke =2(pns) + (prnp)2—(psny) (F3)

Where p; 1s the ratio of the longitudinal FRP bars and 7, is the modular ratio:

E

Erand E. are the modulus of elasticity of FRP and concrete.

vy =2l (Fs)
Ay, 1s the area of FRP stirrups within a spacing of s. The tensile strength of FRP for shear
design, f5, 1s calculated as:

frv = 0.004Ef < f7), (Fo6)
Where E; is the modulus of elasticity of stirrups. fj, strength of bent portion of FRP
stirrups, depends on that 7,/d}, the ratio of internal radius of bend in stirrups to their

diameter which here is assumed to be equal to 3, the minimum recommended by the

guideline.

fro = (00522 +0.3) fry, = 045f, < f (F7)
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J7 1s the ultimate longitudinal tensile strength of FRP stirrups. Examples of calculations
are presented in Tables F1 and F2. The first, from Yost et al. (2001), exemplifies beams
without shear reinforcement while the second, from Nagasaka et al. (1993), represents
shear reinforced beams. As in the second case V' exceeds 3V, the nominal strength, V,,
is calculated and shown twice in Table F1: first, as the sum of the two components of
shear strength and second, according to the modification suggested by Equations 4.31 and
4.32. Such cases of “excessive” FRP contribution are disregarded when the aim is
calculating the statistical parameters of shear resistance under the restrictions of
Equations 4.31 and 4.32. When bias factors are calculated for every case (beams with and
without stirrups are treated separately), the overall bias factor and coefficient of variation
for resistance are calculated as, respectively, the mean and coefficient of variation of

individual bias factors (Table 4.7).
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Table F1: Examples of properties of specimens

FRP bars FRP stirrups
fe b df  Ey
kst oin oin kst 21(41{11112) ksif(j’;Pa) in th{;m) ksi?l\lj{ a) in (fnm)
Reference (MPa) (mm) (mm) (GPa) ) ’ p ’

53 9.0 1125 5800 1116
Yostetal 2001) - 363y 229y (286) (40)  (720) - 0 - -
Nagasakaetal. 33 9.84 996 8120  1.860 8990  0.017 1218 157

(1993) (23) (250) (253) (56)  (1200) (62) (100)  (840)  (40)

www.maharaa.com

eCl



Table F2: Examples of calculations for beams of Table F1

Py Ip In Ve Vy Va Ve Bias

Reference " nr ke yi(Mpa) ksi(Mpa) kips (kN) kips (kN) "7V Kips (kN) kips (KN)  (2)
Yost et al. 4.5 4.5 8.8

ooy 110 141 0162 - ©aeny - 0 ooy @y 19
Nagasaka et 360 548 71 353 04 436

al (1993) 100 2460262 o400 378)  (31.8) (15690 07 1887 (1940) O3

Nagasaka ct 360 548 71 353 o 286 436
al (1993)0 190 2460262 5400 378y 31.8) (15690 0T (127.2)0 (194.0)

MModified method: Vi23V.: V,=4V.. Case is neglected.
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APPENDIX G: STUDY IV - EXAMPLE OF SIMULATION TECHNIQUE
The general procedure for generating random samples, x;, of a lognormal variable X with
a coefficient of variation of 0x<0.20, may be described as (Nowak and Collins 2000):
xX; = pye”iox (G1)
zi =07 (W) (G2)
Where u; is a sample of a uniformly distributed variable between 0 and 1 and ®'is the
inverse of the standard normal cumulative distribution. x, is assumed to be uniformly
distributed, therefore its random sample is generated by a simple interpolation over its
range of distribution (0.60<x,,<0.90):
Kmi = 0.60 + 0.30u; (G3)
The table below shows an example of a simulation for an NSM strengthened slab (Table

5.5, Set 2, second row):

Item Nominal Bias CoV Mean . z »
Value@N) () (9 (#=4N) ’ ' ’
fcksi(MPa) 4.0(27.6) 124 0.10 4.96(34.2) 0.766 0.726 5.33(36.8)
fy ksi(MPa) 60 (414) 1.145 0.05 68.7(474) 0.539 0.098 69.0 (476)
f7 kst (MPa) 250 (1725) 1.20 0.08 300(2070) 0.630 0.332  308.1(2126)
Erksi (GPa) 20000(138) 1.04 0.08 20800 (143) 0.544 0.111 20984(145)
Km 0.70 1.071 0.115 0.75 0.663 - 0.799
d; in.(mm) 6.5(165) 0.92 0.12 598(152) 0.757 0.697 6.50 (165)
¢ in.(mm) 1.5(38) 092 0.12 1.38(35) 0.513 0.033 1.39 (35)
dyin.(mm) 8.0(203) - - 7.36 (187) - - 7.89 (200)
b in.(mm) 12.0(305) 1.00 0.00 12.00 (305) - - 12.00 (305)
Ay in.z(mmz) 0.288(186) 1.00 0.015 0.288 (184) 0.227 -0.749 0.285 (184)
Afin.z(mmz) 0.02(12.9) 1.00 0.03 0.02(12.9) 0.703 0.533 0.020(12.9)
Py 1.00 1.02  0.06 1.02 0.330 -0.440 0.993
Py 1.00 1.00 0.06 1.00 0.682 0473 1.029

Excluding the last the two rows, the nominal values of flexural contribution can be

calculated from the data in the second column, using ACI 440.2R-08 design guide:
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M,s=106.76 kip.in (12.06 kN.m), M,=26.88 kip.in (3.04 kN.m), M,=M,,+M,~133.64
kip.in (15.1 kN.m)

These contributions for the ith random sample, denoted by subindex i, may be calculated
from the same data in the last column:

M=122.72 kip.in (13.86 kN.m), M;=37.57 kip.in (4.24 kN.m), M=M+M; =160.29
kip.in. (18.10 kN.m)

Eventually, applying the professional factors from the last two rows, the random samples
of resistance are obtained:

Ry=Py.M=121.86 kip.in(13.77 kN.m), R;= PpM; =38.66 (437 kN.m),
Ri=R+R;=160.52 kip.in. (18.14 kN.m)

R; is one random sample of the flexural strength of a member defined by the nominal or
deign values given in the table. The statistical parameters of R can be calculated from the
samples, once the number of simulations is large enough to represent the population. This
number can be decided on by repeating the simulation and measuring the consistency of
the outcomes. Fig. G1 portrays how the sample size is determined in this study. For the
slab in the example, the simulation is repeated 10 times, each time with n samples
(n=1,10,100,...) resulting in 10 different values of mean strength , uz, for each sample
size, n. Let usand o5 represent the mean and standard deviation of the 10 values of u for
any given n. Fig. G1 shows how, as expected, the variation of the results declines as the
sample size grows, so that by N=10,000 the outcome is virtually deterministic. To

eliminate any reservation, in this study each simulation contains 20,000 samples.
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Figure G1: Variation of calculated mean resistance vs. number of samples for the slab in

example (1.0 kip.in=0.113 kN.m).
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